Citation: | Wenxia Wang, Xilan Liu. PROPERTIES AND UNIQUE POSITIVE SOLUTION FOR FRACTIONAL BOUNDARY VALUE PROBLEM WITH TWO PARAMETERS ON THE HALF-LINE[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2491-2507. doi: 10.11948/20200463 |
Based on the theory of cone and operators, this paper concerned with the existence of unique positive solution for a class of nonlinear fractional boundary value problem with two parameters (one is called an eigenvalue parameter and another is a disturbance parameter) on the half-line. More important, the solutions dependence on two parameters was discussed, which shows that different parameters have different effects on the properties of positive solutions, and the results reflect an interesting fact different from our inference. Some examples are given to illustrate the main results.
[1] | R. Agarwal and D. O'Regan, Infinite interval problems for differential, Difference and integral Equations, Kluwer Academic Publisher, 2001. |
[2] | A. Arara, M. Benchohra, N. Hamidia and J. J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Anal., 2010, 72, 580-586. doi: 10.1016/j.na.2009.06.106 |
[3] | A. Baliki and M. Benchohra, Global existence and asymptotic behavior for functional evolution equations, J. Appl. Anal. Comput., 2014, 4(2), 129-138. |
[4] | Y. Chen, Z. Lv and L. Zhang, Existence and uniqueness of positive mild solutions for a class of fractional evolution equations on infinite interval, Bound. Value Prob., 2017. DOI: 10.1186/s13661-017-0853-2. |
[5] | K. Deimling, Nonlinear Functional Analysis, Springer-Varlag, Berlin, 1985. |
[6] | K. Ghanbari and Y. Gholami, Existence and multiplicity of positive solutions for M-point nonlinear fractional differential equations on the half line, Electronic J. Differ. Equ., 2012. DOI: 10.1016/j.cnsns.2012.06.015. |
[7] | D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstracts Cone, Academic Press, New York, 1988. |
[8] | X. Han, S. Zhou and R. An, Existence and Multiplicity of Positive Solutions for Fractional Differential Equation with Parameter, J. Nonlinear Model. Anal., 2020, 2(1), 15-24. |
[9] | M. Jia, H. Zhang and Q. Chen, Existence of positive solutions for fractional differential equation with integral boundary conditions on the half-line, Bound. Value Prob., 2016. DOI: 10.1186/s13661-016-0614-7. |
[10] | C. Kou, H. Zhou and Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal., 2011, 74, 5975-5986. doi: 10.1016/j.na.2011.05.074 |
[11] | A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, The Netherlands, 2006. |
[12] | X. Li, X. Liu, M. Jia and L. Zhang, The positive solutions of infinite-point boundary value problem of fractional differential equations on the infinite interval, Adv. Differ. Equ., 2017. DOI: 10.1186/s13662-017-1185-3. |
[13] | Y. Liu, Existence and unboundedness of positive solutions for singular boundary value problems on half-line, Appl. Math. Comput., 2013, 144, 543-556. |
[14] | Z. Li and Z. Bai, Existence of solutions for some two-point fractional boundary value problems under barrier strip conditions, Bound. Value Probl., 2019. DOI: 10.1186/s13661-019-01307-1. |
[15] | S. Liang and J. Zhang, Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval, Math. Comput. Model., 2011, 54, 1334-1346. doi: 10.1016/j.mcm.2011.04.004 |
[16] | V. Lakshmikantham and A. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 2008, 69, 2677-2682. doi: 10.1016/j.na.2007.08.042 |
[17] | K. Pei, G. Wang and Y. Sun, Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on intinite domain, Appl. Math. Comput., 2016, 312, 158-168. |
[18] | I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999. |
[19] | X. Su and S. Zhang, Unbounded solutions to a boundary value problem of fractional order on the half-line, Comput. Math. Appl., 2011, 61, 1079-1087. doi: 10.1016/j.camwa.2010.12.058 |
[20] | P. Thiramanus, S. Ntouyas and J. Tariboon, Existence of solutions for Riemann-Liouville fractional differential equations with nonlocal Erdélyi-Kober integral boundary conditions on the half-line, Bound. Value Probl., 2015. DOI: 10.1186/s13661-015-0454-x. |
[21] | G. Wang, Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval, Appl. Math. Lett., 2015, 17, 1-7. |
[22] | L. Zhang, B. Ahmad and G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line, Bull. Aust. Math. Soc., 2015, 91(1), 116-128. doi: 10.1017/S0004972714000550 |
[23] | C. Zhai, W. Wang and L. Zhang, Generalizations for a class of concave and convex operators, Acta Math. Sinica, Chiness Series., 2010, 51(3), 529-54. |
[24] | C. Zhai and L. Zhang, New fixed point theorems for mixed monotone operators and local existencešCuniqueness of positive solutions for nonlinear boundary value problems, J. Math. Anal. Appl., 2011, 382, 594-614. doi: 10.1016/j.jmaa.2011.04.066 |
[25] | C. Zhai and W. Wang, Properties of positive solutions for m-point fractional differential equations on an infinite interval, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 2019, 113, 1289-1298. doi: 10.1007/s13398-018-0548-2 |
[26] | X. Zhao and W. Ge, Unbounded solutions for a fractional boundary value problem on the infinite interval, Acta Appl. Math., 2010, 109, 495-505. doi: 10.1007/s10440-008-9329-9 |