2021 Volume 11 Issue 5
Article Contents

Wenxia Wang, Xilan Liu. PROPERTIES AND UNIQUE POSITIVE SOLUTION FOR FRACTIONAL BOUNDARY VALUE PROBLEM WITH TWO PARAMETERS ON THE HALF-LINE[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2491-2507. doi: 10.11948/20200463
Citation: Wenxia Wang, Xilan Liu. PROPERTIES AND UNIQUE POSITIVE SOLUTION FOR FRACTIONAL BOUNDARY VALUE PROBLEM WITH TWO PARAMETERS ON THE HALF-LINE[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2491-2507. doi: 10.11948/20200463

PROPERTIES AND UNIQUE POSITIVE SOLUTION FOR FRACTIONAL BOUNDARY VALUE PROBLEM WITH TWO PARAMETERS ON THE HALF-LINE

  • Corresponding author: Email: doclanliu@163.com(X. Liu)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11361047, 11561043) and National Science Foundation of Qinghai Province(2017-ZJ-908)
  • Based on the theory of cone and operators, this paper concerned with the existence of unique positive solution for a class of nonlinear fractional boundary value problem with two parameters (one is called an eigenvalue parameter and another is a disturbance parameter) on the half-line. More important, the solutions dependence on two parameters was discussed, which shows that different parameters have different effects on the properties of positive solutions, and the results reflect an interesting fact different from our inference. Some examples are given to illustrate the main results.

    MSC: 34B18, 34B15
  • 加载中
  • [1] R. Agarwal and D. O'Regan, Infinite interval problems for differential, Difference and integral Equations, Kluwer Academic Publisher, 2001.

    Google Scholar

    [2] A. Arara, M. Benchohra, N. Hamidia and J. J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Anal., 2010, 72, 580-586. doi: 10.1016/j.na.2009.06.106

    CrossRef Google Scholar

    [3] A. Baliki and M. Benchohra, Global existence and asymptotic behavior for functional evolution equations, J. Appl. Anal. Comput., 2014, 4(2), 129-138.

    Google Scholar

    [4] Y. Chen, Z. Lv and L. Zhang, Existence and uniqueness of positive mild solutions for a class of fractional evolution equations on infinite interval, Bound. Value Prob., 2017. DOI: 10.1186/s13661-017-0853-2.

    CrossRef Google Scholar

    [5] K. Deimling, Nonlinear Functional Analysis, Springer-Varlag, Berlin, 1985.

    Google Scholar

    [6] K. Ghanbari and Y. Gholami, Existence and multiplicity of positive solutions for M-point nonlinear fractional differential equations on the half line, Electronic J. Differ. Equ., 2012. DOI: 10.1016/j.cnsns.2012.06.015.

    CrossRef Google Scholar

    [7] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstracts Cone, Academic Press, New York, 1988.

    Google Scholar

    [8] X. Han, S. Zhou and R. An, Existence and Multiplicity of Positive Solutions for Fractional Differential Equation with Parameter, J. Nonlinear Model. Anal., 2020, 2(1), 15-24.

    Google Scholar

    [9] M. Jia, H. Zhang and Q. Chen, Existence of positive solutions for fractional differential equation with integral boundary conditions on the half-line, Bound. Value Prob., 2016. DOI: 10.1186/s13661-016-0614-7.

    CrossRef Google Scholar

    [10] C. Kou, H. Zhou and Y. Yan, Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis, Nonlinear Anal., 2011, 74, 5975-5986. doi: 10.1016/j.na.2011.05.074

    CrossRef Google Scholar

    [11] A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, The Netherlands, 2006.

    Google Scholar

    [12] X. Li, X. Liu, M. Jia and L. Zhang, The positive solutions of infinite-point boundary value problem of fractional differential equations on the infinite interval, Adv. Differ. Equ., 2017. DOI: 10.1186/s13662-017-1185-3.

    CrossRef Google Scholar

    [13] Y. Liu, Existence and unboundedness of positive solutions for singular boundary value problems on half-line, Appl. Math. Comput., 2013, 144, 543-556.

    Google Scholar

    [14] Z. Li and Z. Bai, Existence of solutions for some two-point fractional boundary value problems under barrier strip conditions, Bound. Value Probl., 2019. DOI: 10.1186/s13661-019-01307-1.

    CrossRef Google Scholar

    [15] S. Liang and J. Zhang, Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval, Math. Comput. Model., 2011, 54, 1334-1346. doi: 10.1016/j.mcm.2011.04.004

    CrossRef Google Scholar

    [16] V. Lakshmikantham and A. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 2008, 69, 2677-2682. doi: 10.1016/j.na.2007.08.042

    CrossRef Google Scholar

    [17] K. Pei, G. Wang and Y. Sun, Successive iterations and positive extremal solutions for a Hadamard type fractional integro-differential equations on intinite domain, Appl. Math. Comput., 2016, 312, 158-168.

    Google Scholar

    [18] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999.

    Google Scholar

    [19] X. Su and S. Zhang, Unbounded solutions to a boundary value problem of fractional order on the half-line, Comput. Math. Appl., 2011, 61, 1079-1087. doi: 10.1016/j.camwa.2010.12.058

    CrossRef Google Scholar

    [20] P. Thiramanus, S. Ntouyas and J. Tariboon, Existence of solutions for Riemann-Liouville fractional differential equations with nonlocal Erdélyi-Kober integral boundary conditions on the half-line, Bound. Value Probl., 2015. DOI: 10.1186/s13661-015-0454-x.

    CrossRef Google Scholar

    [21] G. Wang, Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval, Appl. Math. Lett., 2015, 17, 1-7.

    Google Scholar

    [22] L. Zhang, B. Ahmad and G. Wang, Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line, Bull. Aust. Math. Soc., 2015, 91(1), 116-128. doi: 10.1017/S0004972714000550

    CrossRef Google Scholar

    [23] C. Zhai, W. Wang and L. Zhang, Generalizations for a class of concave and convex operators, Acta Math. Sinica, Chiness Series., 2010, 51(3), 529-54.

    Google Scholar

    [24] C. Zhai and L. Zhang, New fixed point theorems for mixed monotone operators and local existencešCuniqueness of positive solutions for nonlinear boundary value problems, J. Math. Anal. Appl., 2011, 382, 594-614. doi: 10.1016/j.jmaa.2011.04.066

    CrossRef Google Scholar

    [25] C. Zhai and W. Wang, Properties of positive solutions for m-point fractional differential equations on an infinite interval, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 2019, 113, 1289-1298. doi: 10.1007/s13398-018-0548-2

    CrossRef Google Scholar

    [26] X. Zhao and W. Ge, Unbounded solutions for a fractional boundary value problem on the infinite interval, Acta Appl. Math., 2010, 109, 495-505. doi: 10.1007/s10440-008-9329-9

    CrossRef Google Scholar

Tables(2)

Article Metrics

Article views(3085) PDF downloads(473) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint