2021 Volume 11 Issue 5
Article Contents

Xinjie Qian, Yang Shen, Jiazhong Yang. THE NUMBER OF RATIONAL SOLUTIONS OF ABEL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2535-2552. doi: 10.11948/20200475
Citation: Xinjie Qian, Yang Shen, Jiazhong Yang. THE NUMBER OF RATIONAL SOLUTIONS OF ABEL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2535-2552. doi: 10.11948/20200475

THE NUMBER OF RATIONAL SOLUTIONS OF ABEL EQUATIONS

  • Corresponding author: Email: qianxj@jit.edu.cn(X. Qian) 
  • Fund Project: The authors were supported by National Science Foundation of China (No. NSFC 12071006), and Qian is supported by PhD research startup foundation of Jinling Institute of Technology (No. jit-b-202049)
  • In this paper, we study rational solutions of the Abel differential equations $ dy/dx = f_m(x)y^2+g_n(x)y^3 $, where $ f_m(x) $ and $ g_n(x) $ are real polynomials of degree $ m $ and $ n $ respectively. The main result of the paper is as follows: We give a systematic upper bound on the number of the nontrivial rational solutions of such equations in all these cases. Then we prove that these upper bounds can be reached in most cases. Finally, we present some examples of Abel equations having exactly $ i $ nontrivial rational solutions, where $ 1\leq i\leq 5 $.

    MSC: 34A05, 34C05, 37C10
  • 加载中
  • [1] D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation, Amer. Math. Monthly, 2008, 115, 202-219. doi: 10.1080/00029890.2008.11920518

    CrossRef Google Scholar

    [2] D. Behloul and S. Cheng, Computation of all polynomial solutions of a class of nonlinear differential equations, Computing, 2006, 77, 163-177. doi: 10.1007/s00607-005-0152-0

    CrossRef Google Scholar

    [3] M. Briskin, J. P. Francoise and Y. Yomdin, Center conditions. Compositions of polynomials and moments on algebraic curves, Ergodic Theory Dynam. Systems, 1999, 19(5), 1201-1220. doi: 10.1017/S0143385799141737

    CrossRef Google Scholar

    [4] M. Briskin, J. P. Francoise and Y. Yomdin, Center conditions. II. Parametric and model center problem, Israel J. Math., 2000, 118, 61-82. doi: 10.1007/BF02803516

    CrossRef Google Scholar

    [5] B. Coll, A. Gasull and J. Llibre, Some theorems on the existence, uniqueness, and nonexistence of limit cycles for quadratic system, J. Diff. Eqns., 1987, 67(3), 372-399. doi: 10.1016/0022-0396(87)90133-1

    CrossRef Google Scholar

    [6] A. Cima, A. Gasull and F. Maosas, On the number of polynomial solutions of Bernouilli and Abel polynomial differential equations, J. Diff. Eqns., 2017, 263, 7099-7122. doi: 10.1016/j.jde.2017.08.003

    CrossRef Google Scholar

    [7] A. Gasull, J. Torregrosa and X. Zhang, The number of polynomial solutions of polynomial Riccati equations, J. Diff. Eqns., 2016, 261, 5071-5093. doi: 10.1016/j.jde.2016.07.019

    CrossRef Google Scholar

    [8] A. Gasull and J. Llibre, Limit cycles for a class of Abel equations, SIAM J. Math. Anal., 1990, 21(5), 1235-1244. doi: 10.1137/0521068

    CrossRef Google Scholar

    [9] J. Gin$\acute{e}$, M. Grau and J. Libre, On the polynomial limit cycles of polynomial differential equations, Israel J. Math., 2011, 181, 461-475. doi: 10.1007/s11856-011-0019-3

    CrossRef Google Scholar

    [10] T. Harko and M. K. Mak, Relativistic dissipative cosmological models and Abel differential equation, Comput. Math. Appl., 2003, 46, 849-853. doi: 10.1016/S0898-1221(03)90147-7

    CrossRef Google Scholar

    [11] C. Li, C. Liu, X. Wang and J. Wu, On the rational limit cycles of Abel equations, Chaos Solitons Fractals, 2018, 110, 28-32. doi: 10.1016/j.chaos.2018.03.004

    CrossRef Google Scholar

    [12] J. Llibre and C. Valls, Polynomial solutions of equivariant polynomial Abel differential equations, Adv. Nonlinear Stud., 2018, 18, 537-542. doi: 10.1515/ans-2017-6043

    CrossRef Google Scholar

    [13] E. D. Rainville, Necessary conditions for polynomial solutions of certain Riccati equations, Amer. Math. Monthly, 1936, 43, 473-476. doi: 10.1080/00029890.1936.11987882

    CrossRef Google Scholar

    [14] C. Valls, Trigonometric polynomial solutions of equivariant trigonometric polynomial Abel differential equations, Electron. J. Diff. Eqns., 2017, 16, 261-270.

    Google Scholar

Article Metrics

Article views(2104) PDF downloads(446) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint