2022 Volume 12 Issue 3
Article Contents

Xijun Deng, Yusheng Jia, Mingji Zhang. STUDIES ON CURRENT-VOLTAGE RELATIONS VIA POISSON-NERNST-PLANCK SYSTEMS WITH MULTIPLE CATIONS AND PERMANENT CHARGES[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 932-951. doi: 10.11948/20210003
Citation: Xijun Deng, Yusheng Jia, Mingji Zhang. STUDIES ON CURRENT-VOLTAGE RELATIONS VIA POISSON-NERNST-PLANCK SYSTEMS WITH MULTIPLE CATIONS AND PERMANENT CHARGES[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 932-951. doi: 10.11948/20210003

STUDIES ON CURRENT-VOLTAGE RELATIONS VIA POISSON-NERNST-PLANCK SYSTEMS WITH MULTIPLE CATIONS AND PERMANENT CHARGES

  • Dedicated to Professor Jibin Li on the occasion of his 80th birthday.
  • Corresponding author: Email: jiayusheng1982@tom.com(Y. Jia) 
  • We study a one-dimensional Poisson-Nernst-Planck system with multiple cations having the same valences and small permanent charges. Viewing the permanent charge as a small parameter, via regular perturbation analysis, approximations of the current-voltage (I-V) relations are derived explicitly, and this allows us to further study the qualitative properties of ionic flows through membrane channels. Our main interest are small permanent charge and channel geometry effects on the I-V relations, which additionally depend on the nonlinear interactions with other physical parameters involved in the model. Critical potentials are identified and their important roles played in the study of the property of ionic flows are characterized. We perform numerical simulations to provide more intuitive illustrations of our theoretical results. Those non-intuitive observations from analysis of the system provide better understandings of the mechanism of ionic flows through membrane channels, particularly the internal dynamics that is not able to be detected via current technology.

    MSC: 34A26, 34B16, 34D15, 37D10, 92C35
  • 加载中
  • [1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and D. J. Watson, Molecular Biology of the Cell, 3rd ed., Garland, New York, 1994.

    Google Scholar

    [2] V. Barcilon, Ion flow through narrow membrane channels: Part I, SIAM J. Appl. Math., 1992, 52, 1391–1404. doi: 10.1137/0152080

    CrossRef Google Scholar

    [3] J. Barthel, H. Krienke and W. Kunz, Physical Chemistry of Electrolyte Solutions: Modern Aspects, Springer-Verlag, New York, 1998.

    Google Scholar

    [4] P. W. Bates, J. Chen and M. Zhang, Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations, Math. Biosci. Eng., 2020, 17, 3736–3766. doi: 10.3934/mbe.2020210

    CrossRef Google Scholar

    [5] P. W. Bates, Y. Jia, G. Lin, H. Lu and M. Zhang, Individual flux study via steady-state Poisson-Nernst-Planck systems: Effects from boundary conditions, SIAM J. on Appl. Dyn. Syst., 2017, 16, 410–430. doi: 10.1137/16M1071523

    CrossRef Google Scholar

    [6] P. W. Bates, Z. Wen and M. Zhang, Small permanent charge effects on individual fluxes via Poisson-Nernst-Planck models with multiple cations, J. Nonlinear Sci., 2021, 31, 1–62. doi: 10.1007/s00332-020-09667-0

    CrossRef Google Scholar

    [7] M. Bazant, K. Thornton and A. Ajdari, Diffuse-charge dynamics in electrochemical systems, Phys. Review E, 2004, 70, 1–24.

    Google Scholar

    [8] M. Z. Bazant, K. Chu and B. J. Bayly, Current-voltage relations for electrochemical thin films, SIAM J. Appl. Math., 2005, 65, 1463–1484. doi: 10.1137/040609938

    CrossRef Google Scholar

    [9] D. Chen and R. S. Eisenberg, Charges, currents and potentials in ionic channels of one conformation, Biophys. J., 1993, 64, 1405–1421. doi: 10.1016/S0006-3495(93)81507-8

    CrossRef Google Scholar

    [10] J. Chen, Y. Wang, L. Zhang and M. Zhang, Mathematical analysis of Poisson-Nernst-Planck models with permanent charges and boundary layers: Studies on individual fluxes, Nonlinearity, 2021, 34, 3879–3906. doi: 10.1088/1361-6544/abf33a

    CrossRef Google Scholar

    [11] J. Chen and M. Zhang, Boundary layer effects on ionic flows via Poisson-Nernst-Planck systems with nonuniform ion sizes, Discrete Contin. Dyn. Syst., Series B, doi:10.3934/dcdsb.2021312.

    CrossRef Google Scholar

    [12] B. Eisenberg, Proteins, Channels, and Crowded Ions, Biophys. Chem., 2003, 100, 507–517.

    Google Scholar

    [13] B. Eisenberg, Ions in Fluctuating Channels: Transistors Alive, Fluctuation and Noise Letters, 2012, 11, 76–96.

    Google Scholar

    [14] B. Eisenberg, Crowded charges in ion channels, In Advances in Chemical Physics; Rice, S. A. Ed., John Wiley & Sons: Hoboken, NJ, USA, 2011, 77–223.

    Google Scholar

    [15] R. S. Eisenberg, From Structure to Function in Open Ionic Channels, J. Memb. Biol., 1999, 71, 1–24.

    Google Scholar

    [16] B. Eisenberg and W. Liu, Poisson-Nernst-Planck systems for ion channels with permanent charges, SIAM J. Math. Anal., 2007, 38, 1932–1966. doi: 10.1137/060657480

    CrossRef Google Scholar

    [17] B. Eisenberg, W. Liu and H. Xu, Reversal charge and reversal potential: case studies via classical Poisson-Nernst-Planck models, Nonlinearity, 2015, 28, 103–128. doi: 10.1088/0951-7715/28/1/103

    CrossRef Google Scholar

    [18] D. Gillespie, A singular perturbation analysis of the Poisson-Nernst-Planck system: Applications to Ionic Channels, Ph. D Thesis, Rush University at Chicago, Chicago, IL, USA, 1999.

    Google Scholar

    [19] D. Gillespie and R. S. Eisenberg, Physical descriptions of experimental selectivity measurements in ion channels, European Biophys. J., 2002, 31, 454–466. doi: 10.1007/s00249-002-0239-x

    CrossRef Google Scholar

    [20] D. Gillespie, W. Nonner and R. S. Eisenberg, Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux, J. Phys. Condens. Matter, 2002, 14, 12129–12145. doi: 10.1088/0953-8984/14/46/317

    CrossRef Google Scholar

    [21] L. J. Henderson, The Fitness of the Environment: an Inquiry Into the Biological Significance of the Properties of Matter, Macmillan, New York, 1927.

    Google Scholar

    [22] Y. Hyon, B. Eisenberg and C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions, Commun. Math. Sci., 2010, 9, 459–475.

    Google Scholar

    [23] Y. Hyon, J. Fonseca, B. Eisenberg and C. Liu, A new Poisson-Nernst-Planck equation (PNP-FS-IF) for charge inversion near walls, Biophys. J., 2011, 100, 578a.

    Google Scholar

    [24] W. Im and B. Roux, Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory, J. Mol. Biol., 2002, 322, 851–869. doi: 10.1016/S0022-2836(02)00778-7

    CrossRef Google Scholar

    [25] S. Ji and W. Liu, Poisson-Nernst-Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I-V relations and Critical Potentials. Part I: Analysis, J. Dyn. Diff. Equat., 2012, 24, 955–983. doi: 10.1007/s10884-012-9277-y

    CrossRef Google Scholar

    [26] S. Ji and W. Liu, Flux ratios and channel structures, J. Dynam. Differ. Equations, 2019, 31, 1141–1183. doi: 10.1007/s10884-017-9607-1

    CrossRef Google Scholar

    [27] S. Ji, W. Liu and M. Zhang, Effects of (small) permanent charges and channel geometry on ionic flows via classical Poisson-Nernst-Planck models, SIAM J. on Appl. Math., 2015, 75, 114–135. doi: 10.1137/140992527

    CrossRef Google Scholar

    [28] C. Jones, Geometric singular perturbation theory, Dynamical systems (Montecatini Terme, 1994, 44–118. Lect. Notes in Math., 1609. Springer, Berlin, 1995.

    Google Scholar

    [29] G. Lin, W. Liu, Y. Yi and M. Zhang, Poisson-Nernst-Planck systems for ion flow with density functional theory for local hard-sphere potential, SIAM J. on Appl. Dyn. Syst., 2013, 12, 1613–1648. doi: 10.1137/120904056

    CrossRef Google Scholar

    [30] W. Liu, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems, SIAM J. Appl. Math., 2005, 65, 754–766. doi: 10.1137/S0036139903420931

    CrossRef Google Scholar

    [31] W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species, J. Differential Equations, 2009, 246, 428–451. doi: 10.1016/j.jde.2008.09.010

    CrossRef Google Scholar

    [32] W. Liu, A flux ratio and a universal property of permanent charges effects on fluxes, Comput. Math. Biophys., 2018, 6, 28–40. doi: 10.1515/cmb-2018-0003

    CrossRef Google Scholar

    [33] W. Liu and H. Xu, A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow, J. Differential Equations, 2015, 258, 1192–1228. doi: 10.1016/j.jde.2014.10.015

    CrossRef Google Scholar

    [34] W. Nonner and R. S. Eisenberg, Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels, Biophys. J., 1998, 75, 1287–1305. doi: 10.1016/S0006-3495(98)74048-2

    CrossRef Google Scholar

    [35] S. Y. Noskov, S. Berneche and B. Roux, Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature, 2004, 431, 830–834.

    Google Scholar

    [36] S. Y. Noskov and B. Roux, Ion selectivity in potassium channels, Biophys. Chem., 2006, 124, 279–291. doi: 10.1016/j.bpc.2006.05.033

    CrossRef Google Scholar

    [37] J. K. Park and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Mathematical study, SIAM J. Appl. Math., 1997, 57, 609–630. doi: 10.1137/S0036139995279809

    CrossRef Google Scholar

    [38] B. Roux, T. W. Allen, S. Berneche and W. Im, Theoretical and computational models of biological ion channels, Quat. Rev. Biophys., 2004, 37, 15–103. doi: 10.1017/S0033583504003968

    CrossRef Google Scholar

    [39] D. J. Rouston, Bipolar Semiconductor Devices, McGraw-Hill, New York, 1990.

    Google Scholar

    [40] Z. Schuss, B. Nadler and R. S. Eisenberg, Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model, Phys. Rev. E, 2001, 64, 1–14.

    Google Scholar

    [41] B. G. Streetman, Solid State Electronic Devices, 4th ed., Prentice-Hall, Englewood Cliffs, NJ, 1972.

    Google Scholar

    [42] C. Tanford, Reynolds, J. Nature's Robots: A History of Proteins, Oxford University Press, New York, 2001.

    Google Scholar

    [43] Y. Wang, L. Zhang and M. Zhang, Studies on individual fluxes via Poisson-Nernst-Planck models with small permanent charges and partial electroneutrality conditions, J. Appl. Anal. Comput., doi: 10.11948/20210045.

    CrossRef Google Scholar

    [44] J. R. M. Warner, Microelectronics: Its unusual origin and personality, IEEE Trans. Electron. Devices, 2001, 48, 2457–2467. doi: 10.1109/16.960368

    CrossRef Google Scholar

    [45] Z. Wen, P. W. Bates and M. Zhang, Effects on I-V relations from small permanent charge and channel geometry via classical Poisson-Nernst-Planck equations with multiple cations, Nonlinearity, 2021, 34, 4464–4502. doi: 10.1088/1361-6544/abfae8

    CrossRef Google Scholar

    [46] Z. Wen, L. Zhang and M. Zhang, Dynamics of classical Poisson-Nernst-Planck systems with multiple cations and boundary layers, J. Dyn. Diff. Equat., 2021, 33, 211–234. doi: 10.1007/s10884-020-09861-4

    CrossRef Google Scholar

    [47] L. Zhang, B. Eisenberg and W. Liu, An effect of large permanent charge: Decreasing flux with increasing transmembrane potential, Eur. Phys. J. Special Topics, 2019, 227, 2575–2601. doi: 10.1140/epjst/e2019-700134-7

    CrossRef Google Scholar

    [48] M. Zhang, Competition between cations via Poisson-Nernst-Planck systems with nonzero but small permanent charges, Membranes, 2021, 11, 236. doi: 10.3390/membranes11040236

    CrossRef Google Scholar

Figures(7)

Article Metrics

Article views(2391) PDF downloads(274) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint