2022 Volume 12 Issue 3
Article Contents

Yanyu Bao, Jianing Chen, Lijun Zhang, Mingji Zhang. HIGHER ORDER EXPANSIONS IN FINITE ION SIZE VIA POISSON-NERNST-PLANCK SYSTEMS WITH BIKERMAN'S LOCAL HARD-SPHERE POTENTIAL[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 907-931. doi: 10.11948/20220001
Citation: Yanyu Bao, Jianing Chen, Lijun Zhang, Mingji Zhang. HIGHER ORDER EXPANSIONS IN FINITE ION SIZE VIA POISSON-NERNST-PLANCK SYSTEMS WITH BIKERMAN'S LOCAL HARD-SPHERE POTENTIAL[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 907-931. doi: 10.11948/20220001

HIGHER ORDER EXPANSIONS IN FINITE ION SIZE VIA POISSON-NERNST-PLANCK SYSTEMS WITH BIKERMAN'S LOCAL HARD-SPHERE POTENTIAL

  • Dedicated to Professor Jibin Li on the occasion of his 80th birthday.
  • Corresponding author: Mingji Zhang, Email: mingji.zhang@nmt.edu
  • Finite ion sizes play significant roles in characterizing ionic flow properties of interest, such as the selectivity of ion channels. As an extension of the work done in [Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1775-1802], we further investigate the higher order (in the volume of the cation), mainly the second order, contributions from finite ion sizes to ionic flows in terms of both the total flow rate of charges and the individual fluxes. This is particularly important since the first-order terms approach zero as the left boundary concentration is close to the right one for the same ion species. The interaction between the first-order terms and the second-order terms is characterized in detail. Moreover, several critical potentials are identified, and they play critical roles in examining the qualitative properties of ionic flows. Some can be estimated experimentally. The analysis in this work could provide complementary information and better understanding of the mechanism of ionic flows through ion channels. Numerical simulations are performed to provide intuitive illustration of our analytical results.

    MSC: 34A26, 34B16, 34D15, 37D10, 92C35
  • 加载中
  • [1] N. Abaid, R. S. Eisenberg and W. Liu, Asymptotic expansions of I-V relations via a Poisson-Nernst-Planck system. SIAM J. Appl. Dyn. Syst., 2008, 7, 1507–1526. doi: 10.1137/070691322

    CrossRef Google Scholar

    [2] R. Aitbayev, P. W. Bates, H. Lu, L. Zhang and M. Zhang, Mathematical studies of Poisson-Nernst-Planck systems: dynamics of ionic flows without electroneutrality conditions. J. Comput. Appl. Math., 2019, 362, 510–527. doi: 10.1016/j.cam.2018.10.037

    CrossRef Google Scholar

    [3] V. Barcilon, Ion flow through narrow membrane channels: Part I. SIAM J. Appl. Math., 1992, 52, 1391–1404. doi: 10.1137/0152080

    CrossRef Google Scholar

    [4] V. Barcilon, D. Chen and R. S. Eisenberg, Ion flow through narrow membrane channels: Part Ⅱ. SIAM J. Appl. Math., 1992, 52, 1405–1425. doi: 10.1137/0152081

    CrossRef Google Scholar

    [5] V. Barcilon, D. Chen, R. S. Eisenberg and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study. SIAM J. Appl. Math., 1997, 57, 631–648. doi: 10.1137/S0036139995312149

    CrossRef Google Scholar

    [6] P. W. Bates, J. Chen and M. Zhang, Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations. Math. Biosci. Eng., 2020, 17, 3736–3766. doi: 10.3934/mbe.2020210

    CrossRef Google Scholar

    [7] P. W. Bates, W. Liu, H. Lu and M. Zhang, Ion size and valence effects on ionic flows via Poisson-Nernst-Planck systems. Commun. Math. Sci., 2017, 15, 881–901. doi: 10.4310/CMS.2017.v15.n4.a1

    CrossRef Google Scholar

    [8] P. W. Bates, Z. Wen and M. Zhang, Small permanent charge effects on individual fluxes via via classical Poisson-Nernst-Planck systems with multiple cations. J. Nonlinear Sci., 2021, 31, 1–62. doi: 10.1007/s00332-020-09667-0

    CrossRef Google Scholar

    [9] J. J. Bikerman, Structure and capacity of the electrical double layer. Philos. Mag., 1942, 33, 384. doi: 10.1080/14786444208520813

    CrossRef Google Scholar

    [10] M. Burger, R. S. Eisenberg and H. W. Engl, Inverse problems related to ion channel selectivity. SIAM J. Appl. Math., 2007, 67, 960–989. doi: 10.1137/060664689

    CrossRef Google Scholar

    [11] A. E. Cardenas, R. D. Coalson and M. G. Kurnikova, Three-Dimensional Poisson-Nernst-Planck Theory Studies: Influence of Membrane Electrostatics on Gramicidin A Channel Conductance. Biophys. J., 2000, 79, 80–93. doi: 10.1016/S0006-3495(00)76275-8

    CrossRef Google Scholar

    [12] D. Chen and R. S. Eisenberg, Charges, currents and potentials in ionic channels of one conformation. Biophys. J., 1993, 64, 1405–1421. doi: 10.1016/S0006-3495(93)81507-8

    CrossRef Google Scholar

    [13] J. Chen, Y. Wang, L. Zhang and M. Zhang, Mathematical analysis of Poisson-Nernst-Planck models with permanent charges and boundary layers: Studies on individual fluxes. Nonlinearity, 2021, 34, 3879–3906. doi: 10.1088/1361-6544/abf33a

    CrossRef Google Scholar

    [14] R. D. Coalson, Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. Nanobioscience, 2005, 4, 81–93. doi: 10.1109/TNB.2004.842495

    CrossRef Google Scholar

    [15] R. Coalson and M. Kurnikova, Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. IEEE Transaction on NanoBioscience, 2005, 4, 81–93. doi: 10.1109/TNB.2004.842495

    CrossRef Google Scholar

    [16] B. Eisenberg, Proteins, Channels, and Crowded Ions. Biophys. Chem., 2003, 100, 507–517.

    Google Scholar

    [17] R. S. Eisenberg, Channels as enzymes. J. Memb. Biol., 1990, 115, 1–12. doi: 10.1007/BF01869101

    CrossRef Google Scholar

    [18] R. S. Eisenberg, Atomic Biology, Electrostatics and Ionic Channels. In New Developments and Theoretical Studies of Proteins, R. Elber, Editor, World Scientific, Philadelphia, 1996, 269–357.

    Google Scholar

    [19] R. S. Eisenberg, From Structure to Function in Open Ionic Channels. J. Memb. Biol., 1999, 171, 1–24. doi: 10.1007/s002329900554

    CrossRef Google Scholar

    [20] B. Eisenberg, Y. Hyon and C. Liu, Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. J. Chem. Phys., 2010, 133, 104104(1–23). doi: 10.1063/1.3476262

    CrossRef Google Scholar

    [21] B. Eisenberg and W. Liu, Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J. Math. Anal., 2007, 38, 1932–1966. doi: 10.1137/060657480

    CrossRef Google Scholar

    [22] A. Ern, R. Joubaud and T. Leliévre, Mathematical study of non-ideal electrostatic correlations in equilibrium electrolytes. Nonlinearity, 2012, 25, 1635–1652. doi: 10.1088/0951-7715/25/6/1635

    CrossRef Google Scholar

    [23] D. Gillespie, A singular perturbation analysis of the Poisson-Nernst-Planck system: Applications to Ionic Channels. Ph. D Dissertation, Rush University at Chicago, 1999.

    Google Scholar

    [24] D. Gillespie, L. Xu, Y. Wang and G. Meissner, (De)constructing the Ryanodine Receptor: Modeling Ion Permeation and Selectivity of the Calcium Release Channel. J. Phys. Chem. B, 2005, 109, 15598–15610. doi: 10.1021/jp052471j

    CrossRef Google Scholar

    [25] D. Gillespie and R. S. Eisenberg, Physical descriptions of experimental selectivity measurements in ion channels. European Biophys. J., 2002, 31, 454–466. doi: 10.1007/s00249-002-0239-x

    CrossRef Google Scholar

    [26] D. Gillespie, W. Nonner and R. S. Eisenberg, Coupling Poisson-Nernst-Planck and density functional theory to calculate ion flux. J. Phys. : Condens. Matter, 2002, 14, 12129–12145. doi: 10.1088/0953-8984/14/46/317

    CrossRef Google Scholar

    [27] D. Gillespie, W. Nonner and R. S. Eisenberg, Crowded Charge in Biological Ion Channels. Nanotech., 2003, 3, 435–438.

    Google Scholar

    [28] P. Graf, M. G. Kurnikova, R. D. Coalson and A. Nitzan, Comparison of Dynamic Lattice Monte-Carlo Simulations and Dielectric Self Energy Poisson-Nernst-Planck Continuum Theory for Model Ion Channels. J. Phys. Chem. B, 2004, 108, 2006–2015. doi: 10.1021/jp0355307

    CrossRef Google Scholar

    [29] L. J. Henderson, The Fitness of the Environment: an Inquiry Into the Biological Significance of the Properties of Matter. Macmillan, New York, 1927.

    Google Scholar

    [30] U. Hollerbach, D. Chen and R. S. Eisenberg, Two- and Three-Dimensional Poisson-Nernst-Planck Simulations of Current Flow through Gramicidin-A. J. Comp. Science, 2002, 16, 373–409.

    Google Scholar

    [31] U. Hollerbach, D. Chen, W. Nonner and B. Eisenberg, Three-dimensional Poisson-Nernst-Planck Theory of Open Channels. Biophys. J., 1999, 76, A205.

    Google Scholar

    [32] Y. Hyon, B. Eisenberg and C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci., 2010, 9, 459–475.

    Google Scholar

    [33] Y. Hyon, J. Fonseca, B. Eisenberg and C. Liu, A new Poisson-Nernst-Planck equation (PNP-FS-IF) for charge inversion near walls. Biophys. J., 2011, 100, 578a.

    Google Scholar

    [34] Y. Hyon, J. Fonseca, B. Eisenberg and C. Liu, Energy variational approach to study charge inversion (layering) near charged walls. Discrete Contin. Dyn. Syst. Ser. B, 2012, 17, 2725–2743. doi: 10.3934/dcdsb.2012.17.2725

    CrossRef Google Scholar

    [35] W. Im, D. Beglov and B. Roux, Continuum solvation model: Electrostatic forces from numerical solutions to the Poisson-Bolztmann equation. Comp. Phys. Comm., 1998, 111, 59–75. doi: 10.1016/S0010-4655(98)00016-2

    CrossRef Google Scholar

    [36] W. Im and B. Roux, Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol., 2002, 322, 851–869. doi: 10.1016/S0022-2836(02)00778-7

    CrossRef Google Scholar

    [37] J. W. Jerome, Mathematical Theory and Approximation of Semiconductor Models. Springer-Verlag, New York, 1995.

    Google Scholar

    [38] J. W. Jerome and T. Kerkhoven, A finite element approximation theory for the drift-diffusion semiconductor model. SIAM J. Numer. Anal., 1991, 28, 4030–422.

    Google Scholar

    [39] S. Ji and W. Liu, Poisson-Nernst-Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I-V relations and Critical Potentials. Part I: Analysis. J. Dyn. Diff. Equat., 2012, 24, 955–983. doi: 10.1007/s10884-012-9277-y

    CrossRef Google Scholar

    [40] S. Ji and W. Liu, Flux ratios and channel structures. J. Dyn. Diff. Equat., 2019, 31, 1141–1183. doi: 10.1007/s10884-017-9607-1

    CrossRef Google Scholar

    [41] S. Ji, W. Liu and M. Zhang, Effects of (small) permanent charges and channel geometry on ionic flows via classical Poisson-Nernst-Planck models. SIAM J. Appl. Math., 2015, 75, 114–135. doi: 10.1137/140992527

    CrossRef Google Scholar

    [42] Y. Jia, W. Liu and M. Zhang, Poisson-Nernst-Planck systems for ion flow with Bikerman's local hard-sphere potential: Ion size and valence effects. Discrete Contin. Dyn. Syst. Ser. B, 2016, 21, 1775–1802. doi: 10.3934/dcdsb.2016022

    CrossRef Google Scholar

    [43] M. S. Kilic, M. Z. Bazant and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. Ⅱ. Modified Poisson-Nernst-Planck equations. Phys. Rev. E, 2007, 75, 021503. doi: 10.1103/PhysRevE.75.021503

    CrossRef Google Scholar

    [44] M. G. Kurnikova, R. D. Coalson, P. Graf and A. Nitzan, A Lattice Relaxation Algorithm for 3D Poisson-Nernst-Planck Theory with Application to Ion Transport Through the Gramicidin A Channel. Biophys. J., 1999, 76, 642–656. doi: 10.1016/S0006-3495(99)77232-2

    CrossRef Google Scholar

    [45] B. Li, Minimizations of electrostatic free energy and the Poisson-Boltzmann equation for molecular solvation with implicit solvent. SIAM J. Math. Anal., 2009, 40, 2536–2566. doi: 10.1137/080712350

    CrossRef Google Scholar

    [46] B. Li, Continuum electrostatics for ionic solutions with non-uniform ionic sizes. Nonlinearity, 2009, 22, 22, 811–833.

    Google Scholar

    [47] G. Lin, W. Liu, Y. Yi and M. Zhang, Poisson-Nernst-Planck systems for ion flow with a local hard-sphere potential for ion size effects. SIAM J. Appl. Dyn. Syst., 2013, 12, 1613–1648. doi: 10.1137/120904056

    CrossRef Google Scholar

    [48] J. Liu and B. Eisenberg, Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels. J. Chem. Phys., 2014, 141, 12B640.

    Google Scholar

    [49] W. Liu, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems. SIAM J. Appl. Math., 2005, 65, 754–766. doi: 10.1137/S0036139903420931

    CrossRef Google Scholar

    [50] W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species. J. Differ. Equations, 2009, 246, 428–451. doi: 10.1016/j.jde.2008.09.010

    CrossRef Google Scholar

    [51] W. Liu, A flux ration and a universal property of permanent charge effects on fluxes. Comput. Math. Biophys., 2018, 6, 28–40. doi: 10.1515/cmb-2018-0003

    CrossRef Google Scholar

    [52] W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels. J. Dyn. Diff. Equat., 2010, 22, 413–437. doi: 10.1007/s10884-010-9186-x

    CrossRef Google Scholar

    [53] W. Liu, X. Tu and M. Zhang, Poisson-Nernst-Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I-V relations and Critical Potentials. Part Ⅱ: Numerics. J. Dyn. Diff. Equat., 2012, 24, 985–1004. doi: 10.1007/s10884-012-9278-x

    CrossRef Google Scholar

    [54] H. Lu, J. Li, J. Shackelford, J. Vorenberg and M. Zhang, Ion size effects on individual fluxes via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Analysis without electroneutrality boundary conditions. Discrete Contin. Dyn. Syst. Ser. B, 2018, 23, 1623–1643.

    Google Scholar

    [55] M. S. Mock, An example of nonuniqueness of stationary solutions in device models. COMPEL, 1982, 1, 165–174. doi: 10.1108/eb009970

    CrossRef Google Scholar

    [56] H. Mofidi, B. Eisenberg and W. Liu, Effects of diffusion coefficients and permanent charges on reversal potentials in ionic channels. Entropy, 2020, 22, 1–23.

    Google Scholar

    [57] W. Nonner and R. S. Eisenberg, Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels. Biophys. J., 1998, 75, 1287–1305. doi: 10.1016/S0006-3495(98)74048-2

    CrossRef Google Scholar

    [58] S. Y. Noskov, S. Berneche and B. Roux, Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature, 2004, 431, 830–834. doi: 10.1038/nature02943

    CrossRef Google Scholar

    [59] S. Y. Noskov and B. Roux, Ion selectivity in potassium channels. Biophys. Chem., 2006, 124, 279–291. doi: 10.1016/j.bpc.2006.05.033

    CrossRef Google Scholar

    [60] J. K. Park and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Mathematical study. SIAM J. Appl. Math., 1997, 57, 609–630. doi: 10.1137/S0036139995279809

    CrossRef Google Scholar

    [61] B. Roux, T. W. Allen, S. Berneche and W. Im, Theoretical and computational models of biological ion channels. Quat. Rev. Biophys., 2004, 37, 15–103. doi: 10.1017/S0033583504003968

    CrossRef Google Scholar

    [62] B. Roux and S. Crouzy, Theoretical studies of activated processes in biological ion channels, in Classical and quantum dynamics in condensed phase simulations, B.J. Berne, G. Ciccotti and D.F. Coker Eds, World Scientific Ltd., 1998, 445–462.

    Google Scholar

    [63] I. Rubinstein, Multiple steady states in one-dimensional electrodiffusion with local electroneutrality. SIAM J. Appl. Math., 1987, 47, 1076–1093. doi: 10.1137/0147070

    CrossRef Google Scholar

    [64] I. Rubinstein, Electro-Diffusion of Ions. SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA, 1990.

    Google Scholar

    [65] M. Saraniti, S. Aboud and R. Eisenberg, The Simulation of Ionic Charge Transport in Biological Ion Channels: an Introduction to Numerical Methods. Rev. Comp. Chem., 2005, 22, 229–294.

    Google Scholar

    [66] Z. Schuss, B. Nadler and R. S. Eisenberg, Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Phys. Rev. E, 2001, 64, 1–14.

    Google Scholar

    [67] A. Singer and J. Norbury, A Poisson-Nernst-Planck model for biological ion channels–an asymptotic analysis in a three-dimensional narrow funnel. SIAM J. Appl. Math., 2009, 70, 949–968. doi: 10.1137/070687037

    CrossRef Google Scholar

    [68] A. Singer, D. Gillespie, J. Norbury and R. S. Eisenberg, Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: applications to ion channels. European J. Appl. Math., 2008, 19, 541–560. doi: 10.1017/S0956792508007596

    CrossRef Google Scholar

    [69] H. Steinrück, Asymptotic analysis of the current-voltage curve of a $pnpn$ semiconductor device. IMA J. Appl. Math., 1989, 43, 243–259. doi: 10.1093/imamat/43.3.243

    CrossRef Google Scholar

    [70] H. Steinrück, A bifurcation analysis of the one-dimensional steady-state semiconductor device equations. SIAM J. Appl. Math., 1989, 49, 1102–1121. doi: 10.1137/0149066

    CrossRef Google Scholar

    [71] L. Sun and W. Liu, Non-localness of excess potentials and boundary value problems of Poisson-Nernst-Planck systems for ionic flow: a case study. J. Dyn. Diff. Equat., 2018, 30, 779–797. doi: 10.1007/s10884-017-9578-2

    CrossRef Google Scholar

    [72] Z. Wen, P. W. Bates and M. Zhang, Effects on I-V relations from small permanent charge and channel geometry via classical Poisson-Nernst-Planck equations with multiple cations. Nonlinearity, 2021, 34, 4464–4502. doi: 10.1088/1361-6544/abfae8

    CrossRef Google Scholar

    [73] Z. Wen, L. Zhang and M. Zhang, Dynamics of classical Poisson-Nernst-Planck systems with multiple cations and boundary layers. J. Dyn. Diff. Equat., 2021, 33, 211–234. doi: 10.1007/s10884-020-09861-4

    CrossRef Google Scholar

    [74] M. Zhang, Asymptotic expansions and numerical simulations of I-V relations via a steady-state Poisson-Nernst-Planck system. Rocky MT J. Math., 2015, 45, 1681–1708.

    Google Scholar

    [75] M. Zhang, Boundary layer effects on ionic flows via classical Poisson-Nernst-Planck systems. Comput. Math. Biophys., 2018, 6, 14–27. doi: 10.1515/cmb-2018-0002

    CrossRef Google Scholar

    [76] M. Zhang, Competition between cations via Poisson-Nernst-Planck systems with nonzero but small permanent charges. Membranes, 2021, 11, 236. doi: 10.3390/membranes11040236

    CrossRef Google Scholar

    [77] L. Zhang, B. Eisenberg and W. Liu, An effect of large permanent charge: Decreasing flux with increasing transmembrane potential. Eur. Phys. J. Special Topics, 2019, 227, 2575–2601. doi: 10.1140/epjst/e2019-700134-7

    CrossRef Google Scholar

    [78] Q. Zheng, D. Chen and G. Wei, Second-order Poisson-Nernst-Planck solver for ion transport. J. Comput. Phys., 2011, 230, 5239–5262. doi: 10.1016/j.jcp.2011.03.020

    CrossRef Google Scholar

    [79] Q. Zheng and G. Wei, Poisson-Boltzmann-Nernst-Planck model. J. Chem. Phys., 2011, 134, 194101(1–17). doi: 10.1063/1.3581031

    CrossRef Google Scholar

    [80] S. Zhou, Z. Wang and B. Li, Mean-field description of ionic size effects with nonuniform ionic sizes: A numerical approach. Phy. Rev. E, 2011, 84, 021901(1–13). doi: 10.1103/PhysRevE.84.021901

    CrossRef Google Scholar

Figures(3)

Article Metrics

Article views(2435) PDF downloads(332) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint