2022 Volume 12 Issue 3
Article Contents

Zhihao Cao, Jiafu Wang, Lihong Huang. GLOBAL ASYMPTOTICAL STABILITY OF A PLANT DISEASE MODEL WITH AN ECONOMIC THRESHOLD[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 895-906. doi: 10.11948/20210496
Citation: Zhihao Cao, Jiafu Wang, Lihong Huang. GLOBAL ASYMPTOTICAL STABILITY OF A PLANT DISEASE MODEL WITH AN ECONOMIC THRESHOLD[J]. Journal of Applied Analysis & Computation, 2022, 12(3): 895-906. doi: 10.11948/20210496

GLOBAL ASYMPTOTICAL STABILITY OF A PLANT DISEASE MODEL WITH AN ECONOMIC THRESHOLD

  • Dedicated to Professor Jibin Li on the occasion of his 80th birthday.
  • Corresponding authors: Email: jfwangmath@163.com(J. Wang);  Email: lhhuang@csust.edu.cn(L. Huang)
  • Fund Project: This work is supported by the National Natural Science Foundation of China (No. 12171056), the Natural Science Foundation of Hunan Province, China (No. 2021JJ30698), and the Research Foundation of Education Bureau of Hunan Province, China (No. 20B018)
  • This paper presents a plant disease model with an economic threshold, where the replanting number of susceptible plants depends on the removing number of infective plants. Making use of Lyapunov approach and Poincaré maps, we thoroughly investigate the global dynamics. We show the global asymptotical stability of endemic equilibria as well as a pseudo equilibrium. Moreover, the convergence in finite time is also examined for the infected plants. Our theoretical results indicate that the control goal could be achieved by taking appropriate removal and replanting rates.

    MSC: 34A36, 34D23, 92C80
  • 加载中
  • [1] A. Baciotti and F. Ceragioli, Stability and stabilization of discontinuous systems and non-smooth Lyapunov function, ESAIM Control Optim. Calc. Var., 1999, 4(4), 361-376.

    Google Scholar

    [2] C. Chen and X. Chen, Rich Sliding Motion and Dynamics in a Filippov Plant-Disease System, Int. J. Bifurcation Chaos, 2018, 28(01), 1850012. doi: 10.1142/S0218127418500128

    CrossRef Google Scholar

    [3] N. Chong and R. Smith, Modeling avian influenza using Filippov systems to determine culling of infected birds and quarantine, Nonlinear Anal. Real World Appl., 2015, 24, 196-218. doi: 10.1016/j.nonrwa.2015.02.007

    CrossRef Google Scholar

    [4] M. Chan and M. Jeger, An analytical model of plant virus disease dynamics with roguing and replanting, J. Appl. Ecol., 1994, 31(3), 413-427. doi: 10.2307/2404439

    CrossRef Google Scholar

    [5] A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988.

    Google Scholar

    [6] S. Fishman, R. Marcus, H. Talpaz et al., Epidemiological and economic models for the spread and control of citrus tristeza virus disease, Phytoparasitica, 1983, 11(1), 39-49. doi: 10.1007/BF02980710

    CrossRef Google Scholar

    [7] S. Fishman and R. Marcus, A model for spread of plant disease with periodic removes, J. Math. Biol., 1984, 21, 149-158. doi: 10.1007/BF00277667

    CrossRef Google Scholar

    [8] Z. Guo, L. Huang and X. Zou, Impact of discontinuous treatments on disease dynamics in an SIR epidemic model, Math. Biosci. Eng., 2013, 9(1), 97-110.

    Google Scholar

    [9] L. Huang, H. Ma, J. Wang, and C. Huang, Global dynamics of a Filippov plant disease model with an enconomic threshold of infected-susceptible ratio, J. Appl. Anal. Comput., 2020, 10(5), 2263-2277.

    Google Scholar

    [10] T. Iljon, J. Stirling and R. J. Smith, A mathematical model describing an outbreak of fire blight, 2012, 91-104.

    Google Scholar

    [11] R. Jones, Determining threshold levels for seed-borne virus infection in seed stocks, Virus Res., 2000, 71(1-2), 171-183. doi: 10.1016/S0168-1702(00)00197-0

    CrossRef Google Scholar

    [12] R. Jones, Using epidemiological information to develop effective integrated virus disease management strategies, Virus Res., 2004, 99(1), 5-30.

    Google Scholar

    [13] W. Li, L. Huang and J. Wang, Global dynamics of Filippov-type plant disease models with an interaction ratio threshold, Math. Meth. Appl. Sci., 2020, 43(11), 6995-7008. doi: 10.1002/mma.6450

    CrossRef Google Scholar

    [14] W. Li, L. Huang and J. Wang, Dynamic analysis of discontinuous plant disease models with a non-smooth separation line, Nonlinear Dyn., 2020, 99(1), 1675-1697.

    Google Scholar

    [15] W. Li, J. Ji, L. Huang and Z. Guo, Global dynamics of a controlled discontinuous diffusive SIR epidemic system, Appl. Math. Lett., 2021, 121(1), 107420.

    Google Scholar

    [16] W. Li, J. Ji, L. Huang and J. Wang, Bifurcations and dynamics of a plant disease system under non-smooth control strategy, Nonlinear Dyn., 2020, 99(2209), 3351-3371.

    Google Scholar

    [17] W. Li, L. Huang, Z. Guo and J. Ji, Global dynamic behavior of a plant disease model with ratio dependent impulsive control strategy, Math. Comput. Simul., 2020, 177, 120-139. doi: 10.1016/j.matcom.2020.03.009

    CrossRef Google Scholar

    [18] W. Li, J. Ji and L. Huang, Dynamics of a discontinuous computer worm system, Proc. Amer. Math. Soc., 2020, 148(10), 4389-4403. doi: 10.1090/proc/15095

    CrossRef Google Scholar

    [19] X. Meng and Z. Li, The dynamics of plant disease models with continuous and impulsive cultural control strategies, J. Theor. Biol., 2010, 266(1), 29-40. doi: 10.1016/j.jtbi.2010.05.033

    CrossRef Google Scholar

    [20] R. Strange and P. Scott, Plant disease: A threat to global food security, Annu. Rev. Phytopathol, 2005, 4(1), 83-116.

    Google Scholar

    [21] H. Thieme and J. Heesterbeek, How to estimate the effificacy of periodic control of an infectious plant disease, Math. Biosci., 1989, 93(1), 15-29. doi: 10.1016/0025-5564(89)90011-4

    CrossRef Google Scholar

    [22] S. Tang, Y. Xiao and R. A. Cheke, Dynamical analysis of plant disease models with cultural control strategies and economic thresholds, Math. Comput. Simul., 2010, 80(5), 894-921. doi: 10.1016/j.matcom.2009.10.004

    CrossRef Google Scholar

    [23] S. Tang, Y. Xiao and R. A. Cheke, Multiple attractors of host-parasitoid models with integrated pest management strategies: eradication, persistence and outbreak, Theor. Popul. Biol., 2008, 73(2), 181-197. doi: 10.1016/j.tpb.2007.12.001

    CrossRef Google Scholar

    [24] S. Tang and R. A. Cheke, Models for integrated pest control and their biological implications, Math. Biosci., 2008, 215(1), 115-125. doi: 10.1016/j.mbs.2008.06.008

    CrossRef Google Scholar

    [25] F. van den Bosch, N. McRoberts, F. van den Berg and L. V. Madden, The basic reproduction number of plant pathogens: matrix approaches to complex dynamics, Phytopathology, 2008, 98(2), 239-249. doi: 10.1094/PHYTO-98-2-0239

    CrossRef Google Scholar

    [26] F. van den Bosch, M. J. Jeger and C. A. Gilligan, Disease control and its selection fordamaging plant virus strains in vegetatively propagated staple food crops; a heoretical assessment, Proc. R. Soc. B-Biol. Sci., 2007, 274(1606), 11-18. doi: 10.1098/rspb.2006.3715

    CrossRef Google Scholar

    [27] F. van den Bosch and A. M. Roos, The dynamics of infectious diseases in orchards with roguing and replanting as control strategy, J. Math. Biol., 1996, 35(2), 129-157. doi: 10.1007/s002850050047

    CrossRef Google Scholar

    [28] M. Vurro, B. Bonciani and G. Vannacci, Emerging infectious diseases of crop plants in developing countries: impact on agriculture and socio-economic consequences, Food Secur., 2010, 2(2), 113-132. doi: 10.1007/s12571-010-0062-7

    CrossRef Google Scholar

    [29] J. Wang, X. Chen and L. Huang, The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 2019, 469(1), 405-427. doi: 10.1016/j.jmaa.2018.09.024

    CrossRef Google Scholar

    [30] J. Wang, C. Huang and L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal. Hybrid Syst., 2019, 33, 162-178. doi: 10.1016/j.nahs.2019.03.004

    CrossRef Google Scholar

    [31] J. Wang, S. He and L. Huang, Limit cycles induced by threshold nonlinearity in planar piecewise linear systems of node-focus or node-center type, Internat. J. Bifur. Chaos, 2020, 30(11), 2050160. doi: 10.1142/S0218127420501606

    CrossRef Google Scholar

    [32] J. Wang and L. Huang, Limit cycles bifurcated from a focus-fold singularity in general piecewise smooth planar systems, J. Differ. Equ., 2021, 304, 491-519. doi: 10.1016/j.jde.2021.10.006

    CrossRef Google Scholar

    [33] J. Wang, F. Zhang and L. Wang, Equilibrium, pseudoequilibrium and sliding-mode heteroclinic orbit in a Filippov-type plant disease model, Nonlinear Anal. Real World Appl., 2016, 31, 308-324. doi: 10.1016/j.nonrwa.2016.01.017

    CrossRef Google Scholar

    [34] Y. Xiao, D. Cheng and H. Qin, Optimal impulsive control in periodic ecosystem, Syst. Control Lett., 2006, 55(7), 558-565. doi: 10.1016/j.sysconle.2005.12.003

    CrossRef Google Scholar

    [35] J. Zadoks and R. Schein, Epidemiology and Plant Disease Management, Oxford University Press, New York-Oxford, 1979.

    Google Scholar

    [36] T. Zhao and S. Tang, Plant disease control with economic threshold, J. Biomath., 2009, 24, 385-396.

    Google Scholar

    [37] T. Zhao, Y. Xiao and R. J. Smith, Non-smooth plant disease models with economic thresholds, Math. Biosci., 2013, 241(1), 34-48. doi: 10.1016/j.mbs.2012.09.005

    CrossRef Google Scholar

Figures(7)

Article Metrics

Article views(2708) PDF downloads(415) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint