Citation: | Zaili Zhen, Jingdong Wei, Jiangbo Zhou, Lixin Tian. POSITIVE TRAVELING WAVES IN A DIFFUSIVE EPIDEMIC SYSTEM WITH DISTRIBUTED DELAY AND CONSTANT EXTERNAL SUPPLIES[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2840-2865. doi: 10.11948/20210010 |
This article is concerned with the existence and non-existence of positive traveling wave solutions for a diffusive epidemic system with distributed delay and constant external supplies. By Schauder's fixed point theorem and Lyapunov functional technique, we establish the existence of super-critical positive traveling wave solutions of the system. Meanwhile, applying a limiting method and the theory of asymptotic spreading speeds coupled with comparison principle, we obtain the existence of critical traveling wave solutions for the system. Moreover, utilizing contradictory argument, we deduce the non-existence of traveling wave solutions for the system. These results improve the existing ones in the literature.
[1] | Z. Bai and S. Wu, Traveling waves in a delayed SIR epidemic model with nonlinear incidence, Appl. Math. Comput., 2015, 263, 221-232. |
[2] | E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal., 2001, 47, 4107-4115. doi: 10.1016/S0362-546X(01)00528-4 |
[3] | E. Beretta and Y. Takeuchi, Global stability of an SIR epidemic model with time delays, J. Math. Biol., 1995, 33, 250-260. |
[4] | E. Beretta and Y. Takeuchi, Convergence results in SIR epidemic models with varying population size, Nonlinear Anal., 1997, 28, 1909-1921. doi: 10.1016/S0362-546X(96)00035-1 |
[5] | F. Brauer and C. Castillo-Chvez, Mathematical Models in Population Biology and Epidemiology, 2nd edn. Springer, Berlin, 2012. |
[6] | K. Brown and J. Carr, Deterministic epidemic waves of critical velocity, Math. Proc. Cambridge. Philos. Soc., 1977, 81, 431-433. doi: 10.1017/S0305004100053494 |
[7] | A. Chekroun, Existence and asymptotics of traveling wave fronts for a coupled nonlocal diffusion and difference system with delay, Electron. J. Qual. Theo., 2019, 85, 1-23. |
[8] | Y. Chen, J. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 2017, 30, 2334-2359. doi: 10.1088/1361-6544/aa6b0a |
[9] | A. Ducrot and P. Magal, Travelling wave solutions for an infection age structured epidemic model with external supplies, Nonlinearity, 2011, 24, 2891-2911. doi: 10.1088/0951-7715/24/10/012 |
[10] | J. Epstein, Nonlinear Dynamics, Mathematical Biology, and Social Science: Wise Use of Alternative Therapies, Westview Press, Boulder, 1997. |
[11] | Y. Enatsu, Y. Nakata and Y. Muroya, Lyapunov functional techniques for the global stability analysis of a delayed SIRS epidemic model, Nonlinear Anal. Real., 2012, 13, 2120-2133. doi: 10.1016/j.nonrwa.2012.01.007 |
[12] | S. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 2016, 435, 20-37. doi: 10.1016/j.jmaa.2015.09.069 |
[13] | J. Guo, A. Poh and M. Shimojo, The spreading speed of an SIR epidemic model with nonlocal dispersal, Asymptotic Anal., 2020, 120, 163-174. doi: 10.3233/ASY-191584 |
[14] | W. Hirsch, H. Hamisch and J. P. Gabriel, Differential equation models of some parasitic infections: Methods for the study of asymptotic behavior, Commun. Pure Appl. Math., 1985, 38, 733-753. doi: 10.1002/cpa.3160380607 |
[15] | Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Mod. Meth. Appl. S., 1995, 5, 935-966. doi: 10.1142/S0218202595000504 |
[16] | W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemics, P. Roy. Soc. Lond. A., 1927, 115, 700-721. doi: 10.1098/rspa.1927.0118 |
[17] | W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemics, Part Ⅱ. P. Roy. Soc. Lond. A., 1932, 138, 55-83. doi: 10.1098/rspa.1932.0171 |
[18] | W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemics, Part Ⅲ. P. Roy. Soc. Lond. A., 1933, 141, 94-112. doi: 10.1098/rspa.1933.0106 |
[19] | Y. Li, W. Li and G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Commun. Pur. Appl. Anal., 2015, 14, 1001-1022. doi: 10.3934/cpaa.2015.14.1001 |
[20] | G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 2014, 96, 47-58. doi: 10.1016/j.na.2013.10.024 |
[21] | G. Lin and S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to Lotka-Volterrra competition-diffusion models with distributed delays, J. Dyn. Differ. Equ., 2014, 26, 583-605. doi: 10.1007/s10884-014-9355-4 |
[22] | L. Rizk, J. Burie and A. Ducrot, Travelling wave solutions for a non-local evolutionary-epidemic system, J. Differ. Equations, 2019, 267, 1467-1509. doi: 10.1016/j.jde.2019.02.012 |
[23] | H. Smith and X. Zhao, Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 2000, 31, 514-534. doi: 10.1137/S0036141098346785 |
[24] | Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 2000, 42, 931-947. doi: 10.1016/S0362-546X(99)00138-8 |
[25] | H. Thieme and X. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differ. Equations, 2003, 195, 430-470. doi: 10.1016/S0022-0396(03)00175-X |
[26] | X. Wang, H. Wang and J. Wu, Traveling waves of diffusive predator-prey systems: disease outbreak propagation, Discrete Cont. Dyn-A., 2012, 32, 3303-3324. doi: 10.3934/dcds.2012.32.3303 |
[27] | J. Wei, Asymptotic boundary and nonexistence of traveling waves in a discrete diffusive epidemic model, J. Differ. Equ. Appl., 2020, 26, 163-170. doi: 10.1080/10236198.2019.1709181 |
[28] | J. Wei, Z. Zhen, J. Zhou and L. Tian, Traveling waves for a discrete diffusion epidemic model with delay, Taiwan. J. Math., Doi: 10.11650/tjm/201209. |
[29] | J. Wei, J. Zhou, Z. Zhen and L. Tian, Time periodic traveling waves in a three-component non-autonomous and reaction-diffusion epidemic model, Int. J. Math., 2021, 31, 2150003. |
[30] | J. Wei, J. Zhou, W. Chen, Z. Zhen and L. Tian, Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay, Commun. Pur. Appl. Anal., 2020, 19, 2853-2886. doi: 10.3934/cpaa.2020125 |
[31] | J. Wei, J. Zhou, Z. Zhen and L. Tian, Super-critical and critical traveling waves in a two-component lattice dynamical model with discrete delay, Appl. Math. Comput., 2019, 363, 124621. |
[32] | J. Wei, J. Zhou, Z. Zhen and L. Tian, Super-critical and critical traveling waves in a three-component delayed disease system with mixed diffusion, J. Comput. Appl. Math., 2020, 367, 112451. doi: 10.1016/j.cam.2019.112451 |
[33] | J. Wu, Theory and Applicatios of Partial Functional Differential Equations, New York, Springer, 1996. |
[34] | Z. Xu, Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period, Nonlinear Anal. Theor., 2014, 111, 66-81. doi: 10.1016/j.na.2014.08.012 |
[35] | Q. Ye, Z. Li, M. Wang and Y. Wu, Introduction to Reaction-Diffusion Equations, Science Press, Beijing, 2011. |
[36] | Z. Zhen, J. Wei, J. Zhou and L. Tian, Wave propagation in a nonlocal diffusion epidemic model with nonlocal delayed effects, Appl. Math. Comput., 2018, 339, 15-37. |
[37] | Z. Zhen, J. Wei, L. Tian, J. Zhou and W. Chen, Wave propagation in a diffusive SIR epidemic model with spatiotemporal delay, Math. Method. Appl. Sci., 2018, 41, 7074-7098. doi: 10.1002/mma.5216 |
[38] | J. Zhou, J. Xu, J. Wei and H. Xu, Existence and non-existence of traveling wave solutions for a nonlocal dispersal SIR epidemic model with nonlinear incidence rate, Nonlinear Anal. Real., 2018, 41, 204-231. doi: 10.1016/j.nonrwa.2017.10.016 |
[39] | J. Zhou, L. Song and J. Wei, Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay, J. Differ. Equations, 2020, 268, 4491-4524. doi: 10.1016/j.jde.2019.10.034 |
[40] | J. Zhou, L. Song, J. Wei and H. Xu, Critical traveling waves in a diffusive disease model, J. Math. Anal. Appl., 2019, 476, 522-538. doi: 10.1016/j.jmaa.2019.03.066 |
[41] | K. Zhou, M. Han and Q. Wang, Traveling wave solutions for delayed diffusive SIR epidemic model with nonlinear incidence rate and external supplies, Math. Method. Appl. Sci., 2017, 40, 2772-2783. doi: 10.1002/mma.4197 |