2021 Volume 11 Issue 6
Article Contents

Zhenjie Niu, Zenggui Wang. BIFURCATION AND EXACT TRAVELING WAVE SOLUTIONS FOR THE GENERALIZED NONLINEAR DISPERSIVE MK(M, N) EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2866-2875. doi: 10.11948/20210023
Citation: Zhenjie Niu, Zenggui Wang. BIFURCATION AND EXACT TRAVELING WAVE SOLUTIONS FOR THE GENERALIZED NONLINEAR DISPERSIVE MK(M, N) EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2866-2875. doi: 10.11948/20210023

BIFURCATION AND EXACT TRAVELING WAVE SOLUTIONS FOR THE GENERALIZED NONLINEAR DISPERSIVE MK(M, N) EQUATION

  • Corresponding author: Email: wangzenggui@lcu.edu.cn(Z. Wang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11001115, 11201473), Natural Science Foundation of Shandong (ZR2015AL008) and Natural Science Foundation of Liaocheng University (318012025)
  • This paper investigated the generalized nonlinear dispersive mK(m, n) equation by the planar dynamical systems method, the bifurcations of the system with different parameter region of this equation are presented. Moreover, we find different kinds of exact explicit solutions like peak type solutions, periodic wave solutions and valley type solutions.

    MSC: 35Q53, 35C07, 35Q92
  • 加载中
  • [1] M. M. Arab, A (3+1)-dimensional nonlinear extended Zakharov-Kuznetsov dynamical equation: Bifurcation and traveling wave solutions, AIP Advances, 2020, 10(12), Article ID: 125310. doi: 10.1063/5.0029328

    CrossRef Google Scholar

    [2] S. N. Chow and J. K. Hale, Methods of bifurcation theory[J]. Grundlehren Der Mathematischen Wissenschaften, 1990, 24(18), 36-40.

    Google Scholar

    [3] M. Chu, B. Tian, H. Yin, et al., Kink soliton solutions and bifurcation for a nonlinear space-fractional Kolmogorov-Petrovskii-Piskunov equation in circuitry, chemistry or biology, Modern Physics Letters B, 2019, 33(30), Article ID: 1950372. doi: 10.1142/S021798491950372X

    CrossRef Google Scholar

    [4] A. Das, N. Ghosh and K. Ansari, Bifurcation and exact traveling wave solutions for dual power Zakharov-Kuznetsov-Burgers equation with fractional temporal evolution, Computers & Mathematics with Applications, 2018, 75(1), 59-69.

    Google Scholar

    [5] Z. Dai and Y. Xu, Bifurcations of traveling wave solutions and exact solutions to generalized Zakharov equation and Ginzburg-Landau equation, Applied Mathematics & Mechanics, 2011, 32(12), 1615-1622.

    Google Scholar

    [6] A. A. Elmandouh, Integrability, qualitative analysis and the dynamics of wave solutions for Biswas-Milovic equation, European Physical Journal Plus, 2021, 136(6). doi: 10.1140/epjp/s13360-021-01626-2

    CrossRef Google Scholar

    [7] A. A. Elmandouh, Bifurcation and new traveling wave solutions for the 2D Ginzburg-Landau equation, The European Physical Journal Plus, 2020, 135(8), 1-13. doi: 10.1140/epjp/s13360-020-00675-3

    CrossRef Google Scholar

    [8] M. E. Elbrolosy and A. A. Elmandouh, Bifurcation and new traveling wave solutions for (2+1)-dimensional nonlinear Nizhnik-Novikov-Veselov dynamical equation, European Physical Journal Plus, 2020, 135(6), 1-11. doi: 10.1140/epjp/s13360-020-00546-x

    CrossRef Google Scholar

    [9] A. Galves, J. K. Hale and C. Rocha, Differential equations and dynamical systems, Springer-Verlag, 1991.

    Google Scholar

    [10] B. He, Q. Meng, W. Rui and L. Yao, Bifurcations of travelling wave solutions for the mK(n, n) equation, Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 2114-2123. doi: 10.1016/j.cnsns.2007.06.006

    CrossRef Google Scholar

    [11] B. He and Q. Meng, Bifurcations and new exact travelling wave solutions for the Gerdjikov-CIvanov equation, Communications in Nonlinear Science & Numerical Simulation, 2010, 15(7), 1783-1790.

    Google Scholar

    [12] S. Lai, J. He and Y. Qing, A new study for the modified nonlinear dispersive mK(m, n) equations in higher dimensional spaces, International Journal of Pure and Applied Mathematics, 2009, 51(1), 1-9.

    Google Scholar

    [13] J. Li and T. He, Exact traveling wave solutions and bifurcations in a nonlinear elastic rod equation, Acta Mathematicae Applicatae Sinica(English Series), 2010, 26(2), 283-306. doi: 10.1007/s10255-008-8139-1

    CrossRef Google Scholar

    [14] J. Li, Bifurcations of travelling wave solutions for two generalized Boussinesq systems, Sci. China Ser. A: Math., 2008, 51(009), 1577-1592. doi: 10.1007/s11425-008-0038-7

    CrossRef Google Scholar

    [15] T. D. Leta and J. Li, Various Exact Soliton Solutions and Bifurcations of a Generalized Dullin-Gottwald-Holm Equation with a Power Law Nonlinearity, International Journal of Bifurcation and Chaos, 2017, 27(08), Article ID: 1750129. doi: 10.1142/S0218127417501292

    CrossRef Google Scholar

    [16] T. D. Leta, W. Liu, A. E. Achab, et al., Dynamical Behavior of Traveling Wave Solutions for a (2+1)-Dimensional Bogoyavlenskii Coupled System, Qualitative Theory of Dynamical Systems, 2021, 20(1). doi: 10.1007/s12346-021-00449-x

    CrossRef Google Scholar

    [17] Q. Meng, W. Li and B. He, Smooth and peaked solitary wave solutions of the Broer-Kaup System using the approach of dynamical system, Communications in Theoretical Physics, 2014, 62(3), 308-314. doi: 10.1088/0253-6102/62/3/03

    CrossRef Google Scholar

    [18] M. A. Nuwairan and A. A. Elmandouh, Qualitative analysis and wave propagation of the nonlinear model for low-pass electrical transmission lines, Physica Scripta, 2021, 96(9), 15, Article ID: 095214.

    Google Scholar

    [19] P. Rosenau and J. M. Hyman, Compactons: solitons with finite wavelength, Physical Review Letters, 1993, 70(5), 564-567. doi: 10.1103/PhysRevLett.70.564

    CrossRef Google Scholar

    [20] A. M. Wazwaz, General compactons solutions and solitary patterns solutions for modified nonlinear dispersive equations mK(n, n) in higher dimensional spaces, Mathematics & Computers in Simulation, 2002, 59(6), 519-531.

    Google Scholar

    [21] Z. Wen, The generalized bifurcation method for deriving exact solutions of nonlinear space-time fractional partial differential equations, Applied Mathematics and Computation, 2020, 366, Article ID: 124735. doi: 10.1016/j.amc.2019.124735

    CrossRef Google Scholar

    [22] Z. Yan, Modified nonlinearly dispersive mK(m, n, k) equations: Ⅰ. New compacton solutions and solitary pattern solutions, Computer Physics Communications, 2003, 152(1), 25-33. doi: 10.1016/S0010-4655(02)00794-4

    CrossRef Google Scholar

    [23] B. Zhang, Y. Xia, W. Zhu, et. al, Explicit exact traveling wave solutions and bifurcations of the generalized combined double sinhšCcosh-Gordon equation, Applied Mathematics and Computation, 2019, 363, Article ID: 124576.

    Google Scholar

Figures(6)

Article Metrics

Article views(2502) PDF downloads(378) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint