Citation: | Chun Luo, Min Yang, Xuanhang Ma, Yingshan Zhang, Sihui He. ORTHOGONAL ARRAYS OBTAINED BY ARRAY SUBTRACTION[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2815-2839. doi: 10.11948/20200485 |
In this paper, by using the orthogonal decompositions of projection matrices, a new general approach is proposed to construct asymmetrical OAs, namely array subtraction, the operation of which is not the usual subtraction but it is interesting since many so called atoms of asymmetrical OAs can be obtained by the array subtraction. It is important to find these atoms from some known asymmetrical OAs since they can make up of many new asymmetrical OAs. As an application of the method, some old and new mixed-level OAs of run sizes 72 and 100 are constructed.
[1] | S. Addelman, Orthogonal main effect plans for asymmetrical experiments, Technometrics, 1962, 4, 21-46. doi: 10.1080/00401706.1962.10489985 |
[2] | S. Addelman, Symmetrical and asymmetrical fractional factorial plans, Technometrics, 1962, 4, 47-58. doi: 10.1080/00401706.1962.10489986 |
[3] | S. Addelman and O. Kempthome, Orthogonal main-effect plans, Aeronautical Research Laboratory Technical Report, 1961, 79. |
[4] | S. Addelman and O. Kempthome, Some main-effect plans and OAs of strength two, Ann. Math. Statist., 1961, 32, 1167-1176. doi: 10.1214/aoms/1177704855 |
[5] | V. Agrawal and A. Dey, A note on orthogonal main effect plans for asymmetrical factorials, Sankhya. Ser. B., 1982, 44, 278-282. |
[6] | K. A. Bush, Orthogonal arrays, Ph. D. dessertation. Univ. North Carolina., Chapel Hill, 1950. |
[7] | R. C. Bose and K. A. Bush, Orthogonal arrays of strength two and three, Ann. Math. Statist., 1952, 23, 508-524. doi: 10.1214/aoms/1177729331 |
[8] | G. Chen, L. Ji and J. Lei, The existence of mixed OAs with four and five factors of strength two, Journal of Combinatorial Designs, 2014, 22(8), 323-342. doi: 10.1002/jcd.21350 |
[9] | X. Chen, J. Lin, X. Chen and X. Wang, Matrix Image Method for Ranking Nonregular Fractional Factorial Designs, Acta Mathematicae Applicatae Sinica, 2018, 34(1), 742-751. |
[10] | X. Chen, B. Guo, M. Liu and X. Wang, Robustness of orthogonal-array based composite designs to missing data, Journal of Statistical Planning and Inference, 2018, 194, 15-24. doi: 10.1016/j.jspi.2017.10.004 |
[11] | C. Cheng, Some orthogonal main-effect plans for asymmetrical factorials, Technometrics, 1989, 31, 475-477. |
[12] | C. J. Colbourn, D. R. Stinson and S. Veitch, Constructions of optimal orthogonal arrays with repeated rows, Discrete Mathematics, 2019, 342(9), 2455-2466. doi: 10.1016/j.disc.2019.05.021 |
[13] | A. Dey and G. U. S. Ramakrishma, A note on orthogonal main effect plans, Technometics, 1977, 19, 511-512. doi: 10.1080/00401706.1977.10489594 |
[14] | A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays: Theory and Applications, Springer-Verlag, New York, 1999. |
[15] | H. Huang, Construction of component orthogonal arrays with any number of components, Journal of Statistical Planning and Inference, 2021, 213, 72-79. doi: 10.1016/j.jspi.2020.11.003 |
[16] | A. S. Hedayat, K. Pu and J. Stufken, On the construction of asymmetrical OAs, Ann. Statist., 1992, 20, 2142-2152. |
[17] | L. Jiang and J. Yin, An approach of constructing mixed-level orthogonal arrays of strength $\ge $ 3, Science China Mathematics, 2013, 56(6), 1109-1115. doi: 10.1007/s11425-013-4616-y |
[18] | W. F. Kuhfeld, Orthogonal arrays, http://support.sas.com/techsup/technote/ts723.html, 2015. |
[19] | C. Luo, Y. Zhang and S. He, Asymmetrical OAs with run size 100, Communications in Statistics Theory and Methods, 2015, 44(6), 1222-1240. doi: 10.1080/03610926.2012.763091 |
[20] | J. Leng and D. Han, Orthogonal projection decomposition of matrices and construction of fusion frames, Advances in Computational Mathematics. 2013, 38(2), 369-381. doi: 10.1007/s10444-011-9241-0 |
[21] | C. Luo, Y. Zhang and X. Chen, Orthogonal arrays obtained by generalized Kronecker product, Journal of Applied Analysis and Computation, 2017, 7(2), 728-744. doi: 10.11948/2017046 |
[22] | C. Luo, Theory of generalized difference matrices and construction of OAs, Chinese Science Press, 2015. |
[23] | S. Pang, X. Lin and J. Wang, Construction of Asymmetric Orthogonal Arrays of Strength t from Orthogonal Partition of Small Orthogonal Arrays, IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2018, E101A(8), 1267-1272. |
[24] | S. Pang, W. Xu, G. Chen, et al, Construction of Symmetric and Asymmetric Orthogonal Arrays of Strength t from Orthogonal Partition, Indian Journal of Pure and Applied Mathematics, 2018, 49(4), 663-669. doi: 10.1007/s13226-018-0293-4 |
[25] | S. Pang, J. Wang, D. Lin, and M. Liu, Construction of Mixed Orthogonal Arrays with High Strength, accepted to the Annals of Statistics, https://imstat.org/journals-and-publications/annals-of-statistics/annals-of-statistics-future-papers/, 2021. |
[26] | S. Pang and Y. Zhang, Multiplication of OAs, Acta Mathematica Scientia, 2007, 27A(3), 568-576. |
[27] | C. Rao, Factorial experiments derivable from combinational arrangements of arrays, Journal of the Royal Statal Society, 1947, 9(1), 128-239. |
[28] | C. Rao, Some combinatorial problem of arrays and applications to design of experiments, In a Survey of Combinatorial Theory. (J. N. Srivastava et al ed. ), North-Holland. Amsterdam, 1973, 349-359. |
[29] | F. H. Ryoh, Orthogonal array from Baer Subplanes, Utilitas Mathematica, 1993, 43, 65-70. |
[30] | S. Shrikhande, Generalized Hadamard matrices and OAs strength two, Canadian Journal of mathematics, 1964, 16, 736-740. doi: 10.4153/CJM-1964-070-1 |
[31] | C. Y. Suen, Some mixed orthogonal arrays obtained by orthogonal projection matrices, Journal of Statistical Planning and Inference, 2007, 137(5), 1704-1710. doi: 10.1016/j.jspi.2006.09.019 |
[32] | C. Y. Suen and W. F. Kuhfeld, On the construction of mixed orthogonal arrays of strength two, Journal of Statistical Planning and Inference, 2005, 133, 555-560. doi: 10.1016/j.jspi.2004.03.018 |
[33] | G. Taguchi, System of experimental design, White Plains: UNIPUB, 1987, 1(2). |
[34] | C. Wu, R. Zhang and R. Wang, Construction of asymmetrical orthogonal array of the type OA$(s. k, s. m(s_1. r). {n_1}\cdots (s_t. r). {n_t}). $, Statistica Sinica, 1992, 1, 203-219. |
[35] | C. Wu, Construction of 2m4n design via group scheme, Ann. Statist., 1989, 17, 1880-1885. |
[36] | K. Yamada and N. Miyamoto, A construction and decomposition of orthogonal arrays with non-prime-power numbers of symbols on the complement of a Baer subplane, Designs, Codes and Cryptography, 2015, 14, 1-12. |
[37] | Y. Zhang, Y. Lu and S. Pang, Orthogonal arrays obtained by orthogonal decomposition of projection matrices, Statistica Sinica, 1999, 9, 595-604. |
[38] | Y. Zhang, Asymmetrical orthogonal design by multi-matrix methods, Journal of the Chinese Statistical Association, 1991, 29, 197-218. |
[39] | Y. Zhang, Orthogonal array and matrices, Journal of Mathematical Research And Exposition, 1992, 3, 438-440. |
[40] | Y. Zhang, Theory of multilateral matrix, Chinese Statistic Press, 1993. |
[41] | Y. Zhang, Orthogonal arrays obtained by repeating-column difference matrices, Discrete Mathematics, 2007, 307(4), 246-261. |
[42] | Y. Zhang, W. Li, S. Mao and Z. Zheng, Orthogonal arrays obtained by generalized difference matrices with $g$ levels, SCIENCE CHINA Mathematics (Science in China Series A: Mathematics), 2011, 54(1), 133-143. doi: 10.1007/s11425-010-4144-y |
[43] | Y. Zhang, L. Duan, Y. Lu and Z. Zheng, Construction of Generalized Hadamard Matrix $D(r. m(r+1), r. m(r+1);p). $, Journal of Statistical Planning and Inference, 2002, 104, 239-258. doi: 10.1016/S0378-3758(01)00249-X |
[44] | Y. Zhang, S. Pang and Y. Wang, Orthogonal arrays obtained by generalized Hadamard produc, Discrete Mathematics, 2001, 238, 153-170. |