Citation: | Shu-Hong Wang, Xu-Ran Hai. HERMITE–HADAMARD TYPE INEQUALITIES FOR KATUGAMPOLA FRACTIONAL INTEGRALS[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 1650-1667. doi: 10.11948/20210033 |
In the paper, basing on the Katugampola fractional integrals $ {}^\rho\mathcal{K}^\alpha_{a+}f $ and $ {}^\rho\mathcal{K}^\alpha_{b-}f $ with $ f\in\mathfrak{X}_c^p(a, b) $, the authors establish the Hermite–Hadamard type inequalities for convex functions, give their left estimates, and apply these newly-established inequalities to special means of real numbers. When $ \rho\to1 $, these results become the corresponding ones for the Riemann–Liouville fractional integrals.
[1] | H. Chen and U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 2017, 446(2), 1274–1291. DOI:10.1016/j.jmaa.2016.09.018. |
[2] | H. H. Chu, S. Rashid, Z. Hammouch and Y. M. Chu, New fractional estimates for Hermite-Hadamard-Mercer's type inequalities, Alexandria Eng. J., 2020, 59(5), 3079–3089. DOI:10.1016/j.aej.2020.06.040. |
[3] |
Y. Dong, M. Zeb, G. Farid and S. Bibi, Hadamard inequalities for strongly $(\alpha, m)$-convex functions via Caputo fractional derivatives, J. Math., 2021, 16. DOI:10.1155/2021/6691151.
CrossRef $(\alpha, m)$-convex functions via Caputo fractional derivatives" target="_blank">Google Scholar |
[4] |
S. S. Dragomir, Hermite-Hadamard type inequalities for generalized Riemann–Liouville fractional integrals of $h$-convex functions, Math. Methods Appl. Sci., 2021, 44(3), 2364–2380. DOI:10.1002/mma.5893.
CrossRef $h$-convex functions" target="_blank">Google Scholar |
[5] | C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 1883, 3, 82–82. |
[6] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 2014, 6(4), 1–15. |
[7] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 2011, 218(3), 860–865. DOI:10.1016/j.amc.2011.03.062. |
[8] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006. |
[9] | J. Kuang, Derivative formula of variable upper limit function with a parameter, Jounal of Beijing Institude of Education (Natural Science Edition), 2014, 9(4), 1–6. |
[10] |
T. Lou, G. Ye, D. Zhao and W. Liu, $Iq$-calculus and $Iq$-Hermite-Hadamard inequalities for interval-valued functions, Adv. Difference Equ., 2020, 446, 22. DOI:10.1186/s13662-020-02902-8.
CrossRef $Iq$-calculus and |
[11] | D. Ş. Marinescu and M. Monea, A very short proof of the Hermite-Hadamard inequalities, Amer. Math. Monthly, 2020, 127(9), 850–851. DOI:10.1080/00029890.2020.1803648. |
[12] | C. E. M. Pearce and J. Pecaric, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 2000, 13(2), 51–55. DOI:10.1016/S0893-9659(99)00164-0. |
[13] | I. Podlubny, Fractional Differential Equations: Mathematics in Science and Engineering, Academic Press, San Diego, CA, 1999. |
[14] | F. Qi and D. Lim, Integral representations of bivariate complex geometric mean and their applications, J. Comput. Appl. Math., 2018, 330, 41–58. DOI:10.1016/j.cam.2017.08.005. |
[15] |
J. Sabatier, O. P. Agrawal and J. A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007. DOI: |
[16] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[17] |
S. Wang and F. Qi, Hermite–Hadamard type inequalities for $s$-convex functions via Riemann–Liouville fractional integrals, J. Comput. Anal. Appl., 2017, 22(6), 1124–1134.
$s$-convex functions via Riemann-Liouville fractional integrals" target="_blank">Google Scholar |