Citation: | Hou Yu Zhao, Jing Chen. MAXIMAL AND MINIMAL NONDECREASING BOUNDED SOLUTIONS OF A SECOND ORDER ITERATIVE FUNCTIONAL DIFFERENTIAL EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2601-2610. doi: 10.11948/20210043 |
In this paper, we use the method of lower and upper solutions to study the maximal and minimal nondecreasing bounded solutions of a second order iterative functional differential equation.
[1] | R. Bellman and K. Cooke, Differential-Difference Equations, Acadmic Press, Santa Monica, 1963. |
[2] | T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover, New York, 2006. |
[3] | S. Chow, Existence of periodic solutions of autonomous functional differential equations, J. Diff. Eqs., 1974, 15(2), 350–378. doi: 10.1016/0022-0396(74)90084-9 |
[4] | K. L. Cooke, Functional differential systems: some models and perturbation problems, in: Proceedings of the International Symposium on Differential Equations and Dynamical Systems, Academic Press, New York, 1967. |
[5] | E. Eder, The functional differential equation x'(t) = x(x(t)), J. Diff. Eqs., 1984, 54(3), 390–400. doi: 10.1016/0022-0396(84)90150-5 |
[6] | M. Fečkan, On a certain type of functional differential equations, Math. Slovaca., 1993, 43(1), 39–43. |
[7] | M. Fečkan, J. Wang and H. Zhao, Maximal and minimal nondecreasing bounded solutions of iterative functional differential equations, Appl. Math. Lett., 2021. DOI:/10.1016/j.aml.2020.106886. |
[8] | J. Hale, Theory of Functional Differential Equations, Springer Verlag, New York, 1977. |
[9] | S. Kang, B. Shi and G. Wang, Existence of maximal and minimal periodic solutions for first-order functional differential equations, Appl. Math. Lett., 2010, 23(1), 22–25. doi: 10.1016/j.aml.2009.08.004 |
[10] | E. R. Kaufmann, Existence and uniqueness of solutions for a second-order iterative boundary-value problem, Electron. J. Differential Equations, 2018, 150, 1–6. |
[11] | V. R. Petahov, On a boundary value problem, Trudy Sem. Teor. Diff. Uravnenii Otklon. Argument, Univ. Druzby Narodov Patrisa Lumumby, 1965, 3, 252–255. |
[12] | B. Shi and Z. Li, Existence of solutions and bifurcation of a class of first-order functional differential equations, Acta Math. Appl. Sinica., 1995, 18(1), 83–89. |
[13] | J. Si and X. Wang, Analytic solutions of a second-order iterative functional differential equation, Comput. Math. Appl., 2002, 43(1), 81–90. |
[14] | J. Si and W. Zhang, Analytic solutions of a second-order nonautonomous iterative functional differential equation, J. Math. Anal. Appl., 2005, 306(2), 398–412. doi: 10.1016/j.jmaa.2005.01.005 |
[15] | J. Si and M. Ma, Local invertible analytic solution of a functional differential equation with deviating arguments depending on the state derivative, J. Math. Anal. Appl., 2007, 327(1), 723–734. doi: 10.1016/j.jmaa.2006.04.063 |
[16] | J. Si, W. Zhang and G. Kim, Analytic solutions of an iterative functional differential equation, Appl. Math. Comput., 2004, 150(3), 647–659. |
[17] | B. H. Stephen, On the existence of periodic solutions of z'(t) = -az(t - r + µk(t, z(t))) + F(t), J. Diff. Eqs., 1969, 6(3), 408–419. doi: 10.1016/0022-0396(69)90002-3 |
[18] | Y. Zeng, P. Zhang, T. Lu, and W. Zhang, Existence of solutions for a mixed type differential equation with state-dependence, J. Math. Anal. Appl., 2017, 453(1), 629–644. doi: 10.1016/j.jmaa.2017.04.020 |