2021 Volume 11 Issue 5
Article Contents

Yanfei Zhao, Yepeng Xing. A DYNAMIC MODEL FOR COVID-19 THERAPY WITH DEFECTIVE INTERFERING PARTICLES AND ARTIFICIAL ANTIBODIES[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2611-2629. doi: 10.11948/20210102
Citation: Yanfei Zhao, Yepeng Xing. A DYNAMIC MODEL FOR COVID-19 THERAPY WITH DEFECTIVE INTERFERING PARTICLES AND ARTIFICIAL ANTIBODIES[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2611-2629. doi: 10.11948/20210102

A DYNAMIC MODEL FOR COVID-19 THERAPY WITH DEFECTIVE INTERFERING PARTICLES AND ARTIFICIAL ANTIBODIES

  • Corresponding author: Email: ypxing@shnu.edu.cn(Y. Xing)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 12071297)
  • In this paper, we use ordinary differential equations to propose a mathematical model for COVID-19 therapy with both defective interfering particles and artificial antibodies. For this model, the basic reproduction number R0 is given and its threshold properties are discussed. We investigate the global asymptotic stability of disease-free equilibrium E0 and infection equilibrium without defective interfering particles E1 by utilizing Lyapunov function and LaSalleos invariance principle. For infection equilibrium with defective interfering particles E2, stability and Hopf bifurcation results are presented. Numerical simulation is also given to demonstrate the applicability of the theoretical predictions.

    MSC: 34C60,92B05
  • 加载中
  • [1] S. F. Ahmed, A. A. Quadeer and M. R. McKay, Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies, Viruses, 2020, 12(3), 254. doi: 10.3390/v12030254

    CrossRef Google Scholar

    [2] R. M. Anderson and R. M. May, Infectious diseases of humans: dynamics and control, Oxford university press, Oxford, 1992.

    Google Scholar

    [3] P. Chen, A. Nirula, B. Heller et al., SARS-CoV-2 neutralizing antibody LYCoV555 in outpatients with COVID-19, New England Journal of Medicine, 2021, 384(3), 229–237. doi: 10.1056/NEJMoa2029849

    CrossRef Google Scholar

    [4] P. H. Duesberg, The RNA of influenza virus, Proceedings of the National Academy of Sciences of the United States of America, 1968, 59(3), 930. doi: 10.1073/pnas.59.3.930

    CrossRef Google Scholar

    [5] F. R. Gantmacher and J. L. Brenner, Applications of the Theory of Matrices, Courier Corporation, New York, 2005.

    Google Scholar

    [6] L. E. Gralinski and V. D. Menachery, Return of the coronavirus: 2019-nCoV, Viruses, 2020, 12(2), 135. doi: 10.3390/v12020135

    CrossRef Google Scholar

    [7] J. J. Holland, S. I. T. Kennedy, B. L. Semler et al., Defective interfering RNA viruses and the host-cell response, Springer, 1980. DOI: 10.1007/978-1-4613- 3129-2.

    CrossRef Google Scholar

    [8] X. Jiang, P. Yu, Z. Yuan and X. Zou, Dynamics of an HIV-1 therapy model of fighting a virus with another virus, Journal of Biological Dynamics, 2009, 3(4), 387–409. doi: 10.1080/17513750802485007

    CrossRef Google Scholar

    [9] R. L. Kruse, Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China, F1000Research, 2020. DOI: 10- 12688/f1000research-22211-2.

    Google Scholar

    [10] J. P. La Salle, The stability of dynamical systems, SIAM, Philadelphia, 1976.

    Google Scholar

    [11] Q. Li, X. Guan, P. Wu et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, New England journal of medicine, 2020. DOI: 10-1056/NEJMoa2001316.

    Google Scholar

    [12] W. Li, M. J. Moore, N. Vasilieva et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, 2003, 426(6965), 450– 454. doi: 10.1038/nature02145

    CrossRef Google Scholar

    [13] P. W. Nelson, J. E. Mittler and A. S. Perelson, Effect of drug efficacy and the eclipse phase of the viral life cycle on estimates of HIV viral dynamic parameters, Journal of acquired immune deficiency syndromes (1999), 2001, 26(5), 405–412. doi: 10.1097/00042560-200104150-00002

    CrossRef Google Scholar

    [14] M. Pashaei and N. Rezaei, Immunotherapy for SARS-CoV-2: potential opportunities, Expert opinion on biological therapy, 2020, 20(10), 1111–1116. doi: 10.1080/14712598.2020.1807933

    CrossRef Google Scholar

    [15] U. Rand, S. Y. Kupke, H. Shkarlet et al., Antiviral activity of influenza a virus defective interfering particles against SARS-CoV-2 replication in vitro through stimulation of innate immunity, bioRxiv, 2021. DOI: 10-1101/2021- 02-19-431972.

    Google Scholar

    [16] W. Shang, Y. Yang, Y. Rao and X. Rao, The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines, npj Vaccines, 2020, 5(1), 1-3. doi: 10.1038/s41541-019-0151-3

    CrossRef Google Scholar

    [17] Y. Shi, G. Wang, X. Cai et al., An overview of COVID-19, Journal of Zhejiang University. Science. B, 2020, 21(5), 343–360. doi: 10.1631/jzus.B2000083

    CrossRef Google Scholar

    [18] F. Tapia, T. Laske, M. A. Wasik et al., Production of defective interfering particles of influenza a virus in parallel continuous cultures at two residence timesinsights from QPCR measurements and viral dynamics modeling, Frontiers in bioengineering and biotechnology, 2019. DOI: 10-3389/fbioe-2019-00275.

    Google Scholar

    [19] M. A. Tortorici and D. Veesler, Structural insights into coronavirus entry, Advances in virus research, 2019, 105(4), 93–116.

    Google Scholar

    [20] M. Vignuzzi and C. B. López, Defective viral genomes are key drivers of the virus-host interaction, Nature microbiology, 2019, 4(7), 1075–1087. doi: 10.1038/s41564-019-0465-y

    CrossRef Google Scholar

    [21] M. A. Wasik, L. Eichwald, Y. Genzel and U. Reichl, Cell culture-based production of defective interfering particles for influenza antiviral therapy, Applied microbiology and biotechnology, 2018, 102(3), 1167–1177. doi: 10.1007/s00253-017-8660-3

    CrossRef Google Scholar

    [22] Y. C. Wu, C. S. Chen and Y. J. Chan, The outbreak of COVID-19: an overview, Journal of the Chinese medical association, 2020, 83(3), 217–218. doi: 10.1097/JCMA.0000000000000270

    CrossRef Google Scholar

    [23] P. Yu, Closed-form conditions of bifurcation points for general differential equations, International Journal of Bifurcation and Chaos, 2005, 15(04), 1467–1483. doi: 10.1142/S0218127405012582

    CrossRef Google Scholar

    [24] P. Yu, J. Huang and J. Jiang, Dynamics of an HIV-1 infection model with cell mediated immunity, Communications in Nonlinear Science and Numerical Simulation, 2014, 19(10), 3827–3844. doi: 10.1016/j.cnsns.2014.03.002

    CrossRef Google Scholar

    [25] H. Zhao, K. K. To, H. Chu et al., Dual-functional peptide with defective interfering genes effectively protects mice against avian and seasonal influenza, Nature communications, 2018, 9(1), 1–14. doi: 10.1038/s41467-017-02088-w

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(2835) PDF downloads(327) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint