2021 Volume 11 Issue 5
Article Contents

Longsheng Bao, Binxiang Dai, Siyi Zhang. POSITIVE SOLUTIONS FOR A FRACTIONAL MAGNETIC SCHRÖDINGER EQUATIONS WITH SINGULAR NONLINEARITY AND STEEP POTENTIAL[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2630-2648. doi: 10.11948/20210156
Citation: Longsheng Bao, Binxiang Dai, Siyi Zhang. POSITIVE SOLUTIONS FOR A FRACTIONAL MAGNETIC SCHRÖDINGER EQUATIONS WITH SINGULAR NONLINEARITY AND STEEP POTENTIAL[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2630-2648. doi: 10.11948/20210156

POSITIVE SOLUTIONS FOR A FRACTIONAL MAGNETIC SCHRÖDINGER EQUATIONS WITH SINGULAR NONLINEARITY AND STEEP POTENTIAL

  • Corresponding author: Email address: bxdai@csu.edu.cn(B. Dai) 
  • Fund Project: The authors were supported by the National Nature Science Foundation of China (No. 11871475) and the Fundamental Research Funds for the Central Universities of Central South University (No. 2016zzts012)
  • The paper deals with the following magnetic Schrödinger equation with singular nonlinearity and steep potential

    $\left\{ \begin{array}{l} ( - \Delta )_A^su + {V_\lambda }(x)u = \mu f(x){u^{ - \gamma }} + g(x){u^{p - 1}},{\rm{in}}\;\;{{\mathbb{R}}^N},\\ u > 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{in}}\;\;{{\mathbb{R}}^N}, \end{array} \right.$

    where $ (-\Delta)_A^{s} $ is the fractional magnetic Laplacian operator with $ 0<s<1 $, and $ 0<\gamma<1 $, $ 2<p<2_s^{*} $ $ \left(2_s^{*} = \frac{2N}{N-2s}\ \ \mathrm{for} \ \ N>2s \right) $, the potential $ V_{\lambda}(x) = \lambda V^{+}(x)-V^{-}(x) $ with $ V^{\pm} = \max\{\pm V, 0\} $, $ \lambda, \mu>0 $ are parameters, $ f\in L^{\frac{p}{p+\gamma-1}}( \mathbb{R}^N) $ is a positive weight, while $ g\in L^{\infty}( \mathbb{R}^N) $ is a sign-changing function. By applying the Nehari manifold and fibering map, we obtain the existence of at least two positive solutions, where some new estimates will be established. Recent some results from the literature are extended.

    MSC: 35A15, 35B09, 35J75
  • 加载中
  • [1] V. Ambrosio and P. d'Avenia, Nonlinear fractional magnetic Schrödinger equation: Existence and multiplicity, J. Diff. Eqs., 2018, 264(5), 3336–3368. doi: 10.1016/j.jde.2017.11.021

    CrossRef Google Scholar

    [2] V. Ambrosio, A local mountain pass approach for a class of fractional NLS equations with magnetic fields, Nonlinear Anal., 2020, 190, 111622. doi: 10.1016/j.na.2019.111622

    CrossRef Google Scholar

    [3] J. Aubin and I, Ekeland, Applied Nonlinear Analysis, Pure and Applied Mathematics, Wiley-Interscience Publications, New York, 1984.

    Google Scholar

    [4] C. Alves, G. Figueiredo and M. Furtado, Multiple solutions for a nonlinear Schrödinger equation with magnetic fields, Comm. Partial Differ. Equ., 2011, 36(9), 1565–1586. doi: 10.1080/03605302.2011.593013

    CrossRef Google Scholar

    [5] C. Alves and G. Figueiredo, Multiple solutions for a semilinear elliptic equation with critical growth and magnetic field, Milan J. Math., 2014, 82(2), 389–405. doi: 10.1007/s00032-014-0225-7

    CrossRef Google Scholar

    [6] D. Applebaum, Lévy processes: from probability to finance quantum groups, Notices Am. Math. Soc., 2004, 51(11), 1336–1347.

    Google Scholar

    [7] M. Bhakta and P. Pucci, On multiplicity of positive solutions for nonlocal equations with critical nonlinearity, Nonlinear Anal., 2020, 197, 111853. doi: 10.1016/j.na.2020.111853

    CrossRef Google Scholar

    [8] S. Barile and G. Figueiredo, An existence result for Schrödinger equations with magnetic fields and exponential critical growth, J. Elliptic Parabol. Equ., 2017, 3, 105–125. doi: 10.1007/s41808-017-0007-9

    CrossRef Google Scholar

    [9] T. Bartsch and Z. Wang, Existence and multiplicity results for superlinear elliptic problems onN, Commun. Partial Differ. Equ., 1995, 20(9–10), 1725– 1741. doi: 10.1080/03605309508821149

    CrossRef Google Scholar

    [10] C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lect. Notes Unione Mat. Ital. , Springer, Berlin, 2016.

    Google Scholar

    [11] N. Cui and H. Sun, Existence and multiplicity results for the fractional Schrödinger equations with indefinite potentials, Appl. Anal., 2021, 100(6), 1198–1212. doi: 10.1080/00036811.2019.1636971

    CrossRef Google Scholar

    [12] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 2007, 32(8), 1245–1260. doi: 10.1080/03605300600987306

    CrossRef Google Scholar

    [13] E. Di Nezza, G. Palatucci and E. Vadinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5), 521–573. doi: 10.1016/j.bulsci.2011.12.004

    CrossRef Google Scholar

    [14] P. d'Avenia and M. Squassina, Ground states for fractional magnetic operators, ESAIM Control Optim. Calc. Var., 2018, 24(1), 1–24. doi: 10.1051/cocv/2016071

    CrossRef Google Scholar

    [15] A. Fiscella, A. Pinamonti and E. Vecchi, Multiplicity results for magnetic fractional problems, J. Diff. Eqs., 2017, 263(8), 4617–4633. doi: 10.1016/j.jde.2017.05.028

    CrossRef Google Scholar

    [16] F. Fang and C. Ji, On a fractional Schrödinger equation with periodic potential, Comput. Math. Appl., 2019, 78(5), 1517–1530. doi: 10.1016/j.camwa.2019.03.044

    CrossRef Google Scholar

    [17] Y. Guo and Z. Tang, Sign changing bump solutions for Schrödinger equations involving critical growth and indefinite potential wells, J. Diff. Eqs., 2015, 259(11), 6038–6071. doi: 10.1016/j.jde.2015.07.015

    CrossRef Google Scholar

    [18] Y. Gong and S. Liang, Existence of solutions for asymptotically periodic fractional Schrödinger equation, Comput. Math. Appl., 2017, 74(12), 3175–3182. doi: 10.1016/j.camwa.2017.08.025

    CrossRef Google Scholar

    [19] T. Ichinose and H. Tamura, Imaginary-time path integral for a relativistic spinless particle in an electromagnetic field, Comm. Math. Phys., 1986, 105, 239–257. doi: 10.1007/BF01211101

    CrossRef Google Scholar

    [20] K. Kurata, Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields, Nonlinear Anal., 2000, 41, 763–778. doi: 10.1016/S0362-546X(98)00308-3

    CrossRef Google Scholar

    [21] Q. Li and J. Nie, Multiple sign-changing solutions for fractional Schrödinger equations involving critical or supercritical exponent, Appl. Math. Lett., 2021, 120, 107321. doi: 10.1016/j.aml.2021.107321

    CrossRef Google Scholar

    [22] S. Liang and J. Zhang, Infinitely many solutions for the p-fractional Kirchhoff equations with electromagnetic fields and critical nonlinearity, Nonlinear Anal. Model. Control., 2018, 23(4), 599–618. doi: 10.15388/NA.2018.4.9

    CrossRef Google Scholar

    [23] G. Molica, V. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016.

    Google Scholar

    [24] A. Mao and Y. Zhao, Solutions to a fourth-order elliptic equation with steep potential, Appl. Math. Lett., 2021, 118, 107155. doi: 10.1016/j.aml.2021.107155

    CrossRef Google Scholar

    [25] S. Mao and A. Xia, Multiplicity results of nonlinear fractional magnetic Schrödinger equation with steep potential, Appl. Math. Lett., 2019, 97, 73–80. doi: 10.1016/j.aml.2019.05.027

    CrossRef Google Scholar

    [26] O. Miyagaki, D. Motreanu and F. Pereira, Multiple solutions for a fractional elliptic problem with critical growth, J. Diff. Eqs., 2020, 269(6), 5542–5572. doi: 10.1016/j.jde.2020.04.010

    CrossRef Google Scholar

    [27] J. Sun and T. Wu, On the nonlinear Schrödinger-Poisson systems with signchanging potential, Z. Angew. Math. Phys., 2015, 66, 1649–1669. doi: 10.1007/s00033-015-0494-1

    CrossRef Google Scholar

    [28] M. Squassina and B. Volzone, Bourgain-Brézis-Mironescu formula for magnetic operators, C. R. Math., 2016, 354(8), 825–831. doi: 10.1016/j.crma.2016.04.013

    CrossRef Google Scholar

    [29] M. Xiang, P. Pucci, M. Squassina and B. Zhang, Nonlocal SchrödingerKirchhoff equations with external magnetic field, Discrete Contin. Dyn. Syst., 2017, 37(3), 503–521.

    Google Scholar

    [30] Y. Yun, T. An, G. Ye and J. Zuo, Existence of solutions for asymptotically periodic fractional Schrödinger equation with critical growth, Math. Meth. Appl. Sci., 2020, 43(17), 10081–10097. doi: 10.1002/mma.6681

    CrossRef Google Scholar

    [31] L. Yang, J. Zuo and T. An, Existence of entire solutions for critical SobolevHardy problems involving magnetic fractional operator, Complex Var Elliptic Equ., 2020. DOI:10.1080/1746933.2020.1788003.

    CrossRef Google Scholar

    [32] L. Yang and T. An, Infinitely many solutions for magnetic fractional problems with critical Sobolev-Hardy nonlinearities, Math. Meth. Appl. Sci., 2018, 41(18), 9607–9617. doi: 10.1002/mma.5317

    CrossRef Google Scholar

    [33] B. Zhang, M. Squassina and X. Zhang, Fractional NLS equations with magnetic field, critical frequency and critical growth, Manuscripta Math., 2018, 155(1–2), 115–140. doi: 10.1007/s00229-017-0937-4

    CrossRef Google Scholar

    [34] X. Zhang, B. Zhang and D. Repovš, Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials, Nonlinear Anal., 2016, 142, 48–68. doi: 10.1016/j.na.2016.04.012

    CrossRef Google Scholar

    [35] W. Zhang, J. Zhang and H. Mi, On fractional Schrödinger equation with periodic and asymptotically periodic conditions, Comput. Math. Appl., 2017, 74(6), 1321–1332. doi: 10.1016/j.camwa.2017.06.017

    CrossRef Google Scholar

Article Metrics

Article views(2780) PDF downloads(396) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint