Citation: | Longsheng Bao, Binxiang Dai, Siyi Zhang. POSITIVE SOLUTIONS FOR A FRACTIONAL MAGNETIC SCHRÖDINGER EQUATIONS WITH SINGULAR NONLINEARITY AND STEEP POTENTIAL[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2630-2648. doi: 10.11948/20210156 |
The paper deals with the following magnetic Schrödinger equation with singular nonlinearity and steep potential
$\left\{ \begin{array}{l} ( - \Delta )_A^su + {V_\lambda }(x)u = \mu f(x){u^{ - \gamma }} + g(x){u^{p - 1}},{\rm{in}}\;\;{{\mathbb{R}}^N},\\ u > 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{in}}\;\;{{\mathbb{R}}^N}, \end{array} \right.$
where $ (-\Delta)_A^{s} $ is the fractional magnetic Laplacian operator with $ 0<s<1 $, and $ 0<\gamma<1 $, $ 2<p<2_s^{*} $ $ \left(2_s^{*} = \frac{2N}{N-2s}\ \ \mathrm{for} \ \ N>2s \right) $, the potential $ V_{\lambda}(x) = \lambda V^{+}(x)-V^{-}(x) $ with $ V^{\pm} = \max\{\pm V, 0\} $, $ \lambda, \mu>0 $ are parameters, $ f\in L^{\frac{p}{p+\gamma-1}}( \mathbb{R}^N) $ is a positive weight, while $ g\in L^{\infty}( \mathbb{R}^N) $ is a sign-changing function. By applying the Nehari manifold and fibering map, we obtain the existence of at least two positive solutions, where some new estimates will be established. Recent some results from the literature are extended.
[1] | V. Ambrosio and P. d'Avenia, Nonlinear fractional magnetic Schrödinger equation: Existence and multiplicity, J. Diff. Eqs., 2018, 264(5), 3336–3368. doi: 10.1016/j.jde.2017.11.021 |
[2] | V. Ambrosio, A local mountain pass approach for a class of fractional NLS equations with magnetic fields, Nonlinear Anal., 2020, 190, 111622. doi: 10.1016/j.na.2019.111622 |
[3] | J. Aubin and I, Ekeland, Applied Nonlinear Analysis, Pure and Applied Mathematics, Wiley-Interscience Publications, New York, 1984. |
[4] | C. Alves, G. Figueiredo and M. Furtado, Multiple solutions for a nonlinear Schrödinger equation with magnetic fields, Comm. Partial Differ. Equ., 2011, 36(9), 1565–1586. doi: 10.1080/03605302.2011.593013 |
[5] | C. Alves and G. Figueiredo, Multiple solutions for a semilinear elliptic equation with critical growth and magnetic field, Milan J. Math., 2014, 82(2), 389–405. doi: 10.1007/s00032-014-0225-7 |
[6] | D. Applebaum, Lévy processes: from probability to finance quantum groups, Notices Am. Math. Soc., 2004, 51(11), 1336–1347. |
[7] | M. Bhakta and P. Pucci, On multiplicity of positive solutions for nonlocal equations with critical nonlinearity, Nonlinear Anal., 2020, 197, 111853. doi: 10.1016/j.na.2020.111853 |
[8] | S. Barile and G. Figueiredo, An existence result for Schrödinger equations with magnetic fields and exponential critical growth, J. Elliptic Parabol. Equ., 2017, 3, 105–125. doi: 10.1007/s41808-017-0007-9 |
[9] | T. Bartsch and Z. Wang, Existence and multiplicity results for superlinear elliptic problems on ℝN, Commun. Partial Differ. Equ., 1995, 20(9–10), 1725– 1741. doi: 10.1080/03605309508821149 |
[10] | C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lect. Notes Unione Mat. Ital. , Springer, Berlin, 2016. |
[11] | N. Cui and H. Sun, Existence and multiplicity results for the fractional Schrödinger equations with indefinite potentials, Appl. Anal., 2021, 100(6), 1198–1212. doi: 10.1080/00036811.2019.1636971 |
[12] | L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 2007, 32(8), 1245–1260. doi: 10.1080/03605300600987306 |
[13] | E. Di Nezza, G. Palatucci and E. Vadinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5), 521–573. doi: 10.1016/j.bulsci.2011.12.004 |
[14] | P. d'Avenia and M. Squassina, Ground states for fractional magnetic operators, ESAIM Control Optim. Calc. Var., 2018, 24(1), 1–24. doi: 10.1051/cocv/2016071 |
[15] | A. Fiscella, A. Pinamonti and E. Vecchi, Multiplicity results for magnetic fractional problems, J. Diff. Eqs., 2017, 263(8), 4617–4633. doi: 10.1016/j.jde.2017.05.028 |
[16] | F. Fang and C. Ji, On a fractional Schrödinger equation with periodic potential, Comput. Math. Appl., 2019, 78(5), 1517–1530. doi: 10.1016/j.camwa.2019.03.044 |
[17] | Y. Guo and Z. Tang, Sign changing bump solutions for Schrödinger equations involving critical growth and indefinite potential wells, J. Diff. Eqs., 2015, 259(11), 6038–6071. doi: 10.1016/j.jde.2015.07.015 |
[18] | Y. Gong and S. Liang, Existence of solutions for asymptotically periodic fractional Schrödinger equation, Comput. Math. Appl., 2017, 74(12), 3175–3182. doi: 10.1016/j.camwa.2017.08.025 |
[19] | T. Ichinose and H. Tamura, Imaginary-time path integral for a relativistic spinless particle in an electromagnetic field, Comm. Math. Phys., 1986, 105, 239–257. doi: 10.1007/BF01211101 |
[20] | K. Kurata, Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields, Nonlinear Anal., 2000, 41, 763–778. doi: 10.1016/S0362-546X(98)00308-3 |
[21] | Q. Li and J. Nie, Multiple sign-changing solutions for fractional Schrödinger equations involving critical or supercritical exponent, Appl. Math. Lett., 2021, 120, 107321. doi: 10.1016/j.aml.2021.107321 |
[22] | S. Liang and J. Zhang, Infinitely many solutions for the p-fractional Kirchhoff equations with electromagnetic fields and critical nonlinearity, Nonlinear Anal. Model. Control., 2018, 23(4), 599–618. doi: 10.15388/NA.2018.4.9 |
[23] | G. Molica, V. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University Press, Cambridge, 2016. |
[24] | A. Mao and Y. Zhao, Solutions to a fourth-order elliptic equation with steep potential, Appl. Math. Lett., 2021, 118, 107155. doi: 10.1016/j.aml.2021.107155 |
[25] | S. Mao and A. Xia, Multiplicity results of nonlinear fractional magnetic Schrödinger equation with steep potential, Appl. Math. Lett., 2019, 97, 73–80. doi: 10.1016/j.aml.2019.05.027 |
[26] | O. Miyagaki, D. Motreanu and F. Pereira, Multiple solutions for a fractional elliptic problem with critical growth, J. Diff. Eqs., 2020, 269(6), 5542–5572. doi: 10.1016/j.jde.2020.04.010 |
[27] | J. Sun and T. Wu, On the nonlinear Schrödinger-Poisson systems with signchanging potential, Z. Angew. Math. Phys., 2015, 66, 1649–1669. doi: 10.1007/s00033-015-0494-1 |
[28] | M. Squassina and B. Volzone, Bourgain-Brézis-Mironescu formula for magnetic operators, C. R. Math., 2016, 354(8), 825–831. doi: 10.1016/j.crma.2016.04.013 |
[29] | M. Xiang, P. Pucci, M. Squassina and B. Zhang, Nonlocal SchrödingerKirchhoff equations with external magnetic field, Discrete Contin. Dyn. Syst., 2017, 37(3), 503–521. |
[30] | Y. Yun, T. An, G. Ye and J. Zuo, Existence of solutions for asymptotically periodic fractional Schrödinger equation with critical growth, Math. Meth. Appl. Sci., 2020, 43(17), 10081–10097. doi: 10.1002/mma.6681 |
[31] | L. Yang, J. Zuo and T. An, Existence of entire solutions for critical SobolevHardy problems involving magnetic fractional operator, Complex Var Elliptic Equ., 2020. DOI:10.1080/1746933.2020.1788003. |
[32] | L. Yang and T. An, Infinitely many solutions for magnetic fractional problems with critical Sobolev-Hardy nonlinearities, Math. Meth. Appl. Sci., 2018, 41(18), 9607–9617. doi: 10.1002/mma.5317 |
[33] | B. Zhang, M. Squassina and X. Zhang, Fractional NLS equations with magnetic field, critical frequency and critical growth, Manuscripta Math., 2018, 155(1–2), 115–140. doi: 10.1007/s00229-017-0937-4 |
[34] | X. Zhang, B. Zhang and D. Repovš, Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials, Nonlinear Anal., 2016, 142, 48–68. doi: 10.1016/j.na.2016.04.012 |
[35] | W. Zhang, J. Zhang and H. Mi, On fractional Schrödinger equation with periodic and asymptotically periodic conditions, Comput. Math. Appl., 2017, 74(6), 1321–1332. doi: 10.1016/j.camwa.2017.06.017 |