2022 Volume 12 Issue 5
Article Contents

Li-Jun Zhu, Jia-Feng Liao. MULTIPLE SOLUTIONS FOR A NONHOMOGENEOUS SCHRÖDINGER-POISSON SYSTEM WITH CRITICAL EXPONENT[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1702-1712. doi: 10.11948/20210062
Citation: Li-Jun Zhu, Jia-Feng Liao. MULTIPLE SOLUTIONS FOR A NONHOMOGENEOUS SCHRÖDINGER-POISSON SYSTEM WITH CRITICAL EXPONENT[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1702-1712. doi: 10.11948/20210062

MULTIPLE SOLUTIONS FOR A NONHOMOGENEOUS SCHRÖDINGER-POISSON SYSTEM WITH CRITICAL EXPONENT

  • In this paper, a nonhomogeneous Schrödinger-Poisson system with critical exponent was considered. By using the Mountain Pass Theorem and variational method, two positive solutions were obtained for the system which generalize and improve some recent results in the literature.

    MSC: 35B33, 35J20, 35J60
  • 加载中
  • [1] A. Ambrosetti, On Schrödinger-Poisson systems, Milan J. Math., 2008, 76(1), 257–274. doi: 10.1007/s00032-008-0094-z

    CrossRef Google Scholar

    [2] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 2008, 35(1), 90–108.

    Google Scholar

    [3] A. Ambrosetti and R. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 2008, 10(3), 391–404. doi: 10.1142/S021919970800282X

    CrossRef Google Scholar

    [4] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14(4), 349–381. doi: 10.1016/0022-1236(73)90051-7

    CrossRef Google Scholar

    [5] H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA Nonlinear Differential Equations Appl., 1995, 2(4), 553–572. doi: 10.1007/BF01210623

    CrossRef Google Scholar

    [6] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 1998, 11(2), 283–293. doi: 10.12775/TMNA.1998.019

    CrossRef Google Scholar

    [7] H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 1983, 88(3), 486–490. doi: 10.1090/S0002-9939-1983-0699419-3

    CrossRef Google Scholar

    [8] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure. Appl. Math., 1983, 36(4), 437–477. doi: 10.1002/cpa.3160360405

    CrossRef Google Scholar

    [9] J. Chen, L. Huang and E. M. Rocha, Ground state, bound states and bifurcation properties for a Schrödinger-Poisson system with critical exponent, Electronic J. Diff. Equa., 2019, 2019(28), 1–23.

    Google Scholar

    [10] L. Huang and E. M. Rocha, A positive solutions of Schrödinger-Poisson system with critical exponent, Commun. Math. Anal., 2013, 14(1), 29–43.

    Google Scholar

    [11] L. Huang, E. M. Rocha and J. Chen, Positive and sign-changing solutions of a Schrödinger-Poisson system involving a critical nonlinearity, J. Math. Anal. Appl., 2013, 408(1), 55–69. doi: 10.1016/j.jmaa.2013.05.071

    CrossRef Google Scholar

    [12] C. Lei, G. Liu, C. Chu, et al, New multiple solutions for a Schrödinger-Poisson system involving concave-convex nonlinearities, Turk J. Math., 2020, 44(3), 986–997. doi: 10.3906/mat-1807-100

    CrossRef Google Scholar

    [13] J. Liu and A. Qian, Ground state solution for a Schrödinger-Poisson equation with critical growth, Nonlinear Anal. Real World Appl., 2018. DOI: 10.1016/j.nonrwa.2017.09.008.

    CrossRef Google Scholar

    [14] M. Li and C. Tang, Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^3$ involving concave-convex nonlinearities with critical exponent, Commun. Pure. Appl. Anal., 2017, 16(5), 1587–1602. doi: 10.3934/cpaa.2017076

    CrossRef Google Scholar

    [15] A. Qian, J. Liu and A. Mao, Ground state and nodal solutions for a Schrödinger-Poisson equation with critical growth, J. Math. Phys., 2018, 59(12), 121509. doi: 10.1063/1.5050856

    CrossRef Google Scholar

    [16] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237(2), 655–674. doi: 10.1016/j.jfa.2006.04.005

    CrossRef Google Scholar

    [17] A. Salvatore, Multiple solitary waves for a nonhomogeneous Schrödinger-Maxwell system in $\mathbb{R}^3$, Adv. Nonlinear Stud., 2006. DOI: 10.1515/ans-2006-0203.

    CrossRef Google Scholar

    [18] M. Willem, Minimax Theorems, Birkhauser, Boston, 1996.

    Google Scholar

    [19] D. Wang, H. Zhang and W. Guan, Existence of least-energy sign-changing solutions for a Schrödinger-Poisson system with a critical growth, J. Math. Anal. Appl., 2019, 479(2), 2284–2301. doi: 10.1016/j.jmaa.2019.07.052

    CrossRef Google Scholar

    [20] W. Xie, H. Chen and H. Shi, Multiplicity of positive solutions for Schrödinger-Poisson systems with a critical nonlinearity in $\mathbb{R}^3$, Bull. Malays. Math. Sci. Soc., 2019, 42(5), 2657–3680. doi: 10.1007/s40840-018-0623-z

    CrossRef Google Scholar

    [21] Y. Ye, Multiple positive solutions for nonhomogeneous Schrödinger-Poisson system in $\mathbb{R}^3$, J. Lithuanian Math., 2020, 60(2), 276–287. doi: 10.1007/s10986-020-09476-8

    CrossRef Google Scholar

    [22] J. Zhang, On ground state and nodal solutions of Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 2015, 428(1), 387–404. doi: 10.1016/j.jmaa.2015.03.032

    CrossRef Google Scholar

    [23] L. Zhao and F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 2009, 70(6), 2150–2164. doi: 10.1016/j.na.2008.02.116

    CrossRef Google Scholar

    [24] X. Zhong and C. Tang, Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in $\mathbb{R}^3$, Nonlinear Anal. Real World Appl., 2018. DOI: 10.1016/j.nonrwa.2017.06.014.

    CrossRef Google Scholar

Article Metrics

Article views(2742) PDF downloads(600) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint