Citation: | Li-Jun Zhu, Jia-Feng Liao. MULTIPLE SOLUTIONS FOR A NONHOMOGENEOUS SCHRÖDINGER-POISSON SYSTEM WITH CRITICAL EXPONENT[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1702-1712. doi: 10.11948/20210062 |
In this paper, a nonhomogeneous Schrödinger-Poisson system with critical exponent was considered. By using the Mountain Pass Theorem and variational method, two positive solutions were obtained for the system which generalize and improve some recent results in the literature.
[1] | A. Ambrosetti, On Schrödinger-Poisson systems, Milan J. Math., 2008, 76(1), 257–274. doi: 10.1007/s00032-008-0094-z |
[2] | A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 2008, 35(1), 90–108. |
[3] | A. Ambrosetti and R. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 2008, 10(3), 391–404. doi: 10.1142/S021919970800282X |
[4] | A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14(4), 349–381. doi: 10.1016/0022-1236(73)90051-7 |
[5] | H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA Nonlinear Differential Equations Appl., 1995, 2(4), 553–572. doi: 10.1007/BF01210623 |
[6] | V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 1998, 11(2), 283–293. doi: 10.12775/TMNA.1998.019 |
[7] | H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 1983, 88(3), 486–490. doi: 10.1090/S0002-9939-1983-0699419-3 |
[8] | H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure. Appl. Math., 1983, 36(4), 437–477. doi: 10.1002/cpa.3160360405 |
[9] | J. Chen, L. Huang and E. M. Rocha, Ground state, bound states and bifurcation properties for a Schrödinger-Poisson system with critical exponent, Electronic J. Diff. Equa., 2019, 2019(28), 1–23. |
[10] | L. Huang and E. M. Rocha, A positive solutions of Schrödinger-Poisson system with critical exponent, Commun. Math. Anal., 2013, 14(1), 29–43. |
[11] | L. Huang, E. M. Rocha and J. Chen, Positive and sign-changing solutions of a Schrödinger-Poisson system involving a critical nonlinearity, J. Math. Anal. Appl., 2013, 408(1), 55–69. doi: 10.1016/j.jmaa.2013.05.071 |
[12] | C. Lei, G. Liu, C. Chu, et al, New multiple solutions for a Schrödinger-Poisson system involving concave-convex nonlinearities, Turk J. Math., 2020, 44(3), 986–997. doi: 10.3906/mat-1807-100 |
[13] | J. Liu and A. Qian, Ground state solution for a Schrödinger-Poisson equation with critical growth, Nonlinear Anal. Real World Appl., 2018. DOI: 10.1016/j.nonrwa.2017.09.008. |
[14] | M. Li and C. Tang, Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^3$ involving concave-convex nonlinearities with critical exponent, Commun. Pure. Appl. Anal., 2017, 16(5), 1587–1602. doi: 10.3934/cpaa.2017076 |
[15] | A. Qian, J. Liu and A. Mao, Ground state and nodal solutions for a Schrödinger-Poisson equation with critical growth, J. Math. Phys., 2018, 59(12), 121509. doi: 10.1063/1.5050856 |
[16] | D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237(2), 655–674. doi: 10.1016/j.jfa.2006.04.005 |
[17] | A. Salvatore, Multiple solitary waves for a nonhomogeneous Schrödinger-Maxwell system in $\mathbb{R}^3$, Adv. Nonlinear Stud., 2006. DOI: 10.1515/ans-2006-0203. |
[18] | M. Willem, Minimax Theorems, Birkhauser, Boston, 1996. |
[19] | D. Wang, H. Zhang and W. Guan, Existence of least-energy sign-changing solutions for a Schrödinger-Poisson system with a critical growth, J. Math. Anal. Appl., 2019, 479(2), 2284–2301. doi: 10.1016/j.jmaa.2019.07.052 |
[20] | W. Xie, H. Chen and H. Shi, Multiplicity of positive solutions for Schrödinger-Poisson systems with a critical nonlinearity in $\mathbb{R}^3$, Bull. Malays. Math. Sci. Soc., 2019, 42(5), 2657–3680. doi: 10.1007/s40840-018-0623-z |
[21] | Y. Ye, Multiple positive solutions for nonhomogeneous Schrödinger-Poisson system in $\mathbb{R}^3$, J. Lithuanian Math., 2020, 60(2), 276–287. doi: 10.1007/s10986-020-09476-8 |
[22] | J. Zhang, On ground state and nodal solutions of Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 2015, 428(1), 387–404. doi: 10.1016/j.jmaa.2015.03.032 |
[23] | L. Zhao and F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal., 2009, 70(6), 2150–2164. doi: 10.1016/j.na.2008.02.116 |
[24] | X. Zhong and C. Tang, Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in $\mathbb{R}^3$, Nonlinear Anal. Real World Appl., 2018. DOI: 10.1016/j.nonrwa.2017.06.014. |