2021 Volume 11 Issue 6
Article Contents

Woo Jin Joe, Seong Jin Kim, Yun-Ho Kim, Min Wook Oh. MULTIPLICITY OF SOLUTIONS FOR DOUBLE PHASE EQUATIONS WITH CONCAVE-CONVEX NONLINEARITIES[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2921-2946. doi: 10.11948/20210063
Citation: Woo Jin Joe, Seong Jin Kim, Yun-Ho Kim, Min Wook Oh. MULTIPLICITY OF SOLUTIONS FOR DOUBLE PHASE EQUATIONS WITH CONCAVE-CONVEX NONLINEARITIES[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2921-2946. doi: 10.11948/20210063

MULTIPLICITY OF SOLUTIONS FOR DOUBLE PHASE EQUATIONS WITH CONCAVE-CONVEX NONLINEARITIES

  • This paper is devoted to the study of the L-bound of solutions to a double-phase problem with concave-convex nonlinearities by applying the De Giorgi's iteration method and the localization method. Employing this and a variant of Ekeland's variational principle, we provide the existence of at least two distinct nontrivial solutions belonging to L-space when the convex term does not satisfy the Ambrosetti-Rabinowitz condition in general. In addition, our problem has a sequence of multiple small energy solutions whose L-norms converge to zero. To achieve this result, we utilize the modified functional method and the dual fountain theorem as the main tools.

    MSC: 35B45, 35J20, 35J62, 46E30
  • 加载中
  • [1] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 1994, 122, 519-543. doi: 10.1006/jfan.1994.1078

    CrossRef Google Scholar

    [2] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14, 349-381. doi: 10.1016/0022-1236(73)90051-7

    CrossRef Google Scholar

    [3] J. H. Bae and Y. H. Kim, Critical points theorems via the generalized Ekeland variational principle and its application to equations of p(x)-Laplace type in $\mathbb{R}. {N}$, Taiwanese J. Math., 2019, 23, 193-229.

    Google Scholar

    [4] P. Baroni, M. Colombo and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., 2015, 121, 206-222. doi: 10.1016/j.na.2014.11.001

    CrossRef Google Scholar

    [5] C. Brändle, E. Colorado E, A. de Pablo and U. Sánchez, A concave–convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh, 2013, 143, 39-71. doi: 10.1017/S0308210511000175

    CrossRef Google Scholar

    [6] M. L. M. Carvalho, E. D. da Silva and C. Goulart, Quasilinear elliptic problems with concave–convex nonlinearities, Commun. Contemp. Math., 2017, 19, 1650050, 1-25. doi: 10.1142/S0219199716500504

    CrossRef Google Scholar

    [7] M. Cencelj, V. D. Radulescu and D. Repovs, Double phase problems with variable growth, Nonlinear Anal., 2018, 177, 270-287. doi: 10.1016/j.na.2018.03.016

    CrossRef Google Scholar

    [8] W. Chen and S. Deng, The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities, Z. Angew. Math. Phys., 2015, 66, 1387-1400. doi: 10.1007/s00033-014-0486-6

    CrossRef Google Scholar

    [9] E. B. Choi, J. M. Kim and Y. H. Kim, Infinitely many solutions for equations of p(x)-Laplace type with the nonlinear Neumann boundary condition, Proc. Roy. Soc. Edinburgh Sect. A, 2018, 148, 1-31. doi: 10.1017/S0308210517000117

    CrossRef Google Scholar

    [10] F. Colasuonno and M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 2016, 195, 1917-1959. doi: 10.1007/s10231-015-0542-7

    CrossRef Google Scholar

    [11] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 2015, 215, 443-496. doi: 10.1007/s00205-014-0785-2

    CrossRef Google Scholar

    [12] M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 2015, 218, 219-273. doi: 10.1007/s00205-015-0859-9

    CrossRef Google Scholar

    [13] G. Dai and R. Hao, Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl., 2009, 359, 275-284. doi: 10.1016/j.jmaa.2009.05.031

    CrossRef Google Scholar

    [14] E. D. da Silva, M. L. M. Carvalho, J. V. Gonçalves and C. Goulart, Critical quasilinear elliptic problems using concave-convex nonlinearities, Ann. Mat. Pura Appl., 2019, 198, 693-726. doi: 10.1007/s10231-018-0794-0

    CrossRef Google Scholar

    [15] M. Fabian, P. Habala, P. Hajék, V. Montesinos and V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis, Springer, New York, 2011.

    Google Scholar

    [16] X. Fan and C. Guan, Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications, Nonlinear Anal., 2010, 73, 163-175. doi: 10.1016/j.na.2010.03.010

    CrossRef Google Scholar

    [17] Z. Guo, Elliptic equations with indefinite concave nonlinearities near the origin, J. Math. Anal. Appl., 2010, 367, 273-277. doi: 10.1016/j.jmaa.2010.01.012

    CrossRef Google Scholar

    [18] H. P. Heinz, Free Ljusternik-Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems, J. Differential Equations, 1987, 66, 263-300. doi: 10.1016/0022-0396(87)90035-0

    CrossRef Google Scholar

    [19] K. Ho and I. Sim, Existence and muliplicity of solutions for degenerate p(x)-Laplace equations involving concave-convex type nonlinearities with two parameters, Taiwanese J. Math., 2015, 19, 1469-1493.

    Google Scholar

    [20] I. H. Kim, Y. H. Kim, C. Li and K. Park, Multiplicity of solutions for quasilinear Schrödinger type equations with the concave-convex nonlinearities, J. Korean Math. Soc. (in press).

    Google Scholar

    [21] I. H. Kim, Y. H. Kim and K. Park, Existence and multiplicity of solutions for Schrödinger-Kirchhoff type problems involving the fractional p(·)-Laplacian in $\mathbb{R}. {N}$, Bound. Value Probl., 2020, 121, 1-24.

    Google Scholar

    [22] J. M. Kim, Y. H. Kim and J. Lee, Existence and multiplicity of solutions for Kirchhoff-Schrödinger type equations involving p(x)-Laplacian on the whole space, Nonlinear Anal. Real World Appl., 2019, 45, 620-649. doi: 10.1016/j.nonrwa.2018.07.016

    CrossRef Google Scholar

    [23] J. M. Kim, Y. H. Kim and J. Lee, Radially symmetric solutions for quasilinear elliptic equations involving nonhomogeneous operators in Orlicz-Sobolev space setting, Acta Math. Sin., 2020, 40B, 1679-1699. doi: 10.1007/s10473-020-0605-8?utm_source=TrendMD

    CrossRef Google Scholar

    [24] Y. H. Kim, Infinitely many small energy solutions for equations involving the fractional Laplacian in $\mathbb{R}. {N}$, J. Korean Math. Soc., 2018, 55, 1269-1283.

    Google Scholar

    [25] Y. H. Kim, Existence and multiplicity of solutions to a class of fractional p-Laplacian equations of Schrödinger type with concave-convex nonlinearities in $\mathbb{R}. {N}$, Mathematics, 2020, 8, 1-17.

    Google Scholar

    [26] W. Liu and G. Dai, Existence and multiplicity results for double phase problem, J. Differential Equations, 2018, 265, 4311-4334. doi: 10.1016/j.jde.2018.06.006

    CrossRef Google Scholar

    [27] O. H. Miyagaki, E. Juárez Hurtado and R. S. Rodrigues, Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions, J. Dyn. Diff. Equat., 2018, 30, 405-432. doi: 10.1007/s10884-016-9542-6

    CrossRef Google Scholar

    [28] D. Naimen, Existence of infinitely many solutions for nonlinear Neumann problems with indefinite coefficients, Electron. J. Differential Equations., 2014, 2014, 1-12.

    Google Scholar

    [29] B. T. K. Oanh and D. N. Phuong, On multiplicity solutions for a non-local fractional p-Laplace equation, Complex Var. Elliptic Equ., 2020, 65, 801-822. doi: 10.1080/17476933.2019.1631287

    CrossRef Google Scholar

    [30] V. D. Radulescu, Isotropic and anisotropic double-phase problems: old and new, Opuscula Math., 2019, 39, 259-279. doi: 10.7494/OpMath.2019.39.2.259

    CrossRef Google Scholar

    [31] M. Shao and A. Mao, Schrödinger-Poisson system with concave-convex nonlinearities, J. Math. Phys., 2019, 60, 061504, 1-11. doi: 10.1063/1.5087490

    CrossRef Google Scholar

    [32] Z. Tan and F. Fang, On superlinear p(x)-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal., 2012, 75, 3902-3915. doi: 10.1016/j.na.2012.02.010

    CrossRef Google Scholar

    [33] K. Teng, Multiple solutions for a class of fractional Schrödinger equations in $\mathbb{R}. {N}$, Nonlinear Anal. Real World Appl., 2015, 21, 76-86. doi: 10.1016/j.nonrwa.2014.06.008

    CrossRef Google Scholar

    [34] V. Vergara and R. Zacher, A priori bounds for degenerate and singular evolutionary partial integro-differential equations, Nonlinear Anal., 2010, 73, 3572-3585. doi: 10.1016/j.na.2010.07.039

    CrossRef Google Scholar

    [35] Z. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, Nonlinear Differ. Equ. Appl., 2001, 8, 15-33. doi: 10.1007/PL00001436

    CrossRef Google Scholar

    [36] M. Willem, Minimax Theorems, Birkhauser, Basel, 1996.

    Google Scholar

    [37] T. Wu, Multiple positive solutions for a class of concave–convex elliptic problems in $\mathbb{R}. {N}$ involving sign-changing weight, J. Funct. Anal., 2010, 258, 99-131. doi: 10.1016/j.jfa.2009.08.005

    CrossRef Google Scholar

    [38] M. Xiang, B. Zhang and M. Ferrara, Multiplicity results for the non-homogeneous fractional p-Kirchhoff equations with concave–convex nonlinearities, Proc. R. Soc. A., 2015, 471(20150034), 1-14.

    Google Scholar

    [39] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR, Ser. Mat., 1986, 50, 675-710.

    Google Scholar

    [40] V. V. Zhikov, On Lavrentiev's phenomenon, Russ, J. Math. Phys., 1995, 3, 249-269.

    Google Scholar

    [41] V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 1997, 5, 105-116.

    Google Scholar

    [42] V. V. Zhikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994.

    Google Scholar

    [43] C. Zhong, A generalization of Ekeland's variational principle and application to the study of relation between the weak P.S. condition and coercivity, Nonlinear Anal., 1997, 29, 1421-1431. doi: 10.1016/S0362-546X(96)00180-0

    CrossRef Google Scholar

Article Metrics

Article views(3154) PDF downloads(497) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint