2021 Volume 11 Issue 6
Article Contents

Qingyan Meng, Xiaoyu Jiang, Zhaolin Jiang. INTERESTING DETERMINANTS AND INVERSES OF SKEW LOEPLITZ AND FOEPLITZ MATRICES[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2947-2958. doi: 10.11948/20210070
Citation: Qingyan Meng, Xiaoyu Jiang, Zhaolin Jiang. INTERESTING DETERMINANTS AND INVERSES OF SKEW LOEPLITZ AND FOEPLITZ MATRICES[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2947-2958. doi: 10.11948/20210070

INTERESTING DETERMINANTS AND INVERSES OF SKEW LOEPLITZ AND FOEPLITZ MATRICES

  • Corresponding authors: Email: jxy19890422@sina.com(X. Y. Jiang);  Email: jzh1208@sina.com(Z. L. Jiang)
  • Fund Project: The authors were supported by Natural Science Foundation of Shandong Province (Nos. ZR2020MA051, ZR2020QA035) and the PhD Research Foundation of Linyi University (No.LYDX2018BS052)
  • In this paper, we show that there is an intimate relationship between Toeplitz matrix, tridiagonal Toeplitz matrix, the Fibonacci number, the Lucas number, and the Golden Ratio. We introduce skew Loeplitz and skew Foeplitz matrices and derive their determinants and inverses by construction. Specifically, the determiant of $ n\times n $ skew Loeplitz matrix can be expressed by the $ (n+1) $st Fibonacci number. The inverse of skew Loeplitz matrix is sparse and can be expressed by the $ n $th and $ (n+1) $st Fibonacci numbers. Similarly, the determinant of $ n\times n $ skew Foeplitz matrix also can be expressed by the $ (n+1) $st Lucas number. The inverse of skew Foeplitz matrix can be expressed by only seven elements with each element being the explicit expression of the Lucas or Fibonacci numbers. We also calculate the determinants and inverses of skew Lankel and skew Fankel matrices.

    MSC: 15A09, 15A15, 65F50
  • 加载中
  • [1] M. Akbulak and D. Bozkurt, On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacet. J. Math. Stat., 2008, 37(2), 89-95.

    Google Scholar

    [2] D. Bozkurt and T. Y. Tam, Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas Numbers, Appl. Math. Comput., 2012, 219, 544-551.

    Google Scholar

    [3] J. Chen, Determinants and inverses of symmetric Poeplitz and Qoeplitz matrix, J. Adv. Math. Comput. Sci., 2017, 24(5), 1-20.

    Google Scholar

    [4] X. Chen, Exact determinants and inverses of skew symmetric generalized Loeplitz matrices, J. Adv. Math. Comput. Sci., 2019, 33(6), 1-11.

    Google Scholar

    [5] X. Chen, Determinants and inverses of skew symmetric generalized Foeplitz matrices, J. Adv. Math. Comput. Sci., 2019, 33(4), 1-12.

    Google Scholar

    [6] Q. Feng and F. Meng, Explicit solutions for space-time fractional partial differential equations in mathematical physics by a new generalized fractional Jacobi elliptic equation-based sub-equation method, Optik., 2016, 127, 7450-7458. doi: 10.1016/j.ijleo.2016.05.147

    CrossRef Google Scholar

    [7] M. Han and Z. Jiang, Determinant and inverse of skew Peoeplitz matrix, J. Adv. Math. Comput. Sci., 2018, 28(4), 1-21.

    Google Scholar

    [8] X. Jiang and K. Hong, Explicit inverse matrices of Tribonacci skew circulant type matrices, Appl. Math. Comput., 2015, 268, 93-102.

    Google Scholar

    [9] Z. Jiang, Y. Gong and Y. Gao, Invertibility and explicit inverses of circulant-type matrices with k-Fibonacci and k-Lucas number, Abstr. Appl. Anal., 2014, 238953.

    Google Scholar

    [10] Z. Jiang and J. Sun, Determinant and inverse of a Gaussion Fibonacci skew-Hermitian Toeplitz matrix, J. Nonlinear Sci. Appl., 2017, 10, 3694-3707. doi: 10.22436/jnsa.010.07.27

    CrossRef Google Scholar

    [11] Z. Jiang, W. Wang, Y. Zheng, B. Zuo and B. Niu, Interesting explicit expression of determinants and inverse matrices for Foeplitz and Loeplitz matrices, Mathematics, 2019, 7(10), 939. doi: 10.3390/math7100939

    CrossRef Google Scholar

    [12] L. Liu and Z. Jiang, Explicit form of the inverse matrices of Tribonacci circulant type matrices, Abstr. Appl. Anal., 2015, 169726.

    Google Scholar

    [13] R. Malti and M. Thomassin, Differentiation similarities in fractional pseudo-state space representations and the subspace-based methods, Fract. Calc. Appl. Anal., 2013, 16(1), 273-287. doi: 10.2478/s13540-013-0017-8

    CrossRef Google Scholar

    [14] J. Shao, Z. Zheng and F. Meng, Oscillation criteria for fractional differential equations with mixed nonlinearities, Adv. Differ. Equ., 2013, 323.

    Google Scholar

    [15] S. Shen, J. Cen and Y. Hao, On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Appl. Math. Comput., 2015, 217, 9790-9797.

    Google Scholar

    [16] S. Shen, W. Liu and L. Feng, Explicit inverses of generalized Tribonacci circulant type matrices, Hacet. J. Math. Stat., 2019, 48(3), 689-699.

    Google Scholar

    [17] Y. Sun and F. Meng, Interval criteria for oscillation of second-order differential equations with mixed nonlinearities, Appl. Math. Comput., 2008, 198, 375-381.

    Google Scholar

    [18] K. Thomas, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001.

    Google Scholar

    [19] N. X. Thao, V. K. Tuan and N. Hong, Generalized convolution transforms and Toeplitz plus Hankel integral equation, Fract. Calc. Appl. Anal., 2008, 11(2), 153-174.

    Google Scholar

    [20] J. Wang and F. Meng, Interval oscillation criteria for second order partial differential systems with delays, J. Comput. Appl. Math., 2008, 212, 397-405. doi: 10.1016/j.cam.2006.12.015

    CrossRef Google Scholar

    [21] R. Xu and F. Meng, Some new weakly singular integral inequalities and their applications to fractional differential equations, Journal of Inequalities and Applications, 2016, 1, 1-16.

    Google Scholar

    [22] B. Zuo, Z. Jiang and D. Fu, Determinants and inverses of Ppoeplitz and Ppankel matrices, Special Matrices, 2018, 6, 201-215. doi: 10.1515/spma-2018-0017

    CrossRef Google Scholar

    [23] F. Zhang, The Schur Complement and Its Applications, Springer Science & Business Media, 2006.

    Google Scholar

    [24] Y. Zheng and S. Shon, Exact determinants and inverses of generalized Lucas skew circulant type matrices, Appl. Math. Comput., 2015, 270, 105-113.

    Google Scholar

Article Metrics

Article views(2953) PDF downloads(489) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint