Citation: | Qingyan Meng, Xiaoyu Jiang, Zhaolin Jiang. INTERESTING DETERMINANTS AND INVERSES OF SKEW LOEPLITZ AND FOEPLITZ MATRICES[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2947-2958. doi: 10.11948/20210070 |
In this paper, we show that there is an intimate relationship between Toeplitz matrix, tridiagonal Toeplitz matrix, the Fibonacci number, the Lucas number, and the Golden Ratio. We introduce skew Loeplitz and skew Foeplitz matrices and derive their determinants and inverses by construction. Specifically, the determiant of $ n\times n $ skew Loeplitz matrix can be expressed by the $ (n+1) $st Fibonacci number. The inverse of skew Loeplitz matrix is sparse and can be expressed by the $ n $th and $ (n+1) $st Fibonacci numbers. Similarly, the determinant of $ n\times n $ skew Foeplitz matrix also can be expressed by the $ (n+1) $st Lucas number. The inverse of skew Foeplitz matrix can be expressed by only seven elements with each element being the explicit expression of the Lucas or Fibonacci numbers. We also calculate the determinants and inverses of skew Lankel and skew Fankel matrices.
[1] | M. Akbulak and D. Bozkurt, On the norms of Toeplitz matrices involving Fibonacci and Lucas numbers, Hacet. J. Math. Stat., 2008, 37(2), 89-95. |
[2] | D. Bozkurt and T. Y. Tam, Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal-Lucas Numbers, Appl. Math. Comput., 2012, 219, 544-551. |
[3] | J. Chen, Determinants and inverses of symmetric Poeplitz and Qoeplitz matrix, J. Adv. Math. Comput. Sci., 2017, 24(5), 1-20. |
[4] | X. Chen, Exact determinants and inverses of skew symmetric generalized Loeplitz matrices, J. Adv. Math. Comput. Sci., 2019, 33(6), 1-11. |
[5] | X. Chen, Determinants and inverses of skew symmetric generalized Foeplitz matrices, J. Adv. Math. Comput. Sci., 2019, 33(4), 1-12. |
[6] | Q. Feng and F. Meng, Explicit solutions for space-time fractional partial differential equations in mathematical physics by a new generalized fractional Jacobi elliptic equation-based sub-equation method, Optik., 2016, 127, 7450-7458. doi: 10.1016/j.ijleo.2016.05.147 |
[7] | M. Han and Z. Jiang, Determinant and inverse of skew Peoeplitz matrix, J. Adv. Math. Comput. Sci., 2018, 28(4), 1-21. |
[8] | X. Jiang and K. Hong, Explicit inverse matrices of Tribonacci skew circulant type matrices, Appl. Math. Comput., 2015, 268, 93-102. |
[9] | Z. Jiang, Y. Gong and Y. Gao, Invertibility and explicit inverses of circulant-type matrices with k-Fibonacci and k-Lucas number, Abstr. Appl. Anal., 2014, 238953. |
[10] | Z. Jiang and J. Sun, Determinant and inverse of a Gaussion Fibonacci skew-Hermitian Toeplitz matrix, J. Nonlinear Sci. Appl., 2017, 10, 3694-3707. doi: 10.22436/jnsa.010.07.27 |
[11] | Z. Jiang, W. Wang, Y. Zheng, B. Zuo and B. Niu, Interesting explicit expression of determinants and inverse matrices for Foeplitz and Loeplitz matrices, Mathematics, 2019, 7(10), 939. doi: 10.3390/math7100939 |
[12] | L. Liu and Z. Jiang, Explicit form of the inverse matrices of Tribonacci circulant type matrices, Abstr. Appl. Anal., 2015, 169726. |
[13] | R. Malti and M. Thomassin, Differentiation similarities in fractional pseudo-state space representations and the subspace-based methods, Fract. Calc. Appl. Anal., 2013, 16(1), 273-287. doi: 10.2478/s13540-013-0017-8 |
[14] | J. Shao, Z. Zheng and F. Meng, Oscillation criteria for fractional differential equations with mixed nonlinearities, Adv. Differ. Equ., 2013, 323. |
[15] | S. Shen, J. Cen and Y. Hao, On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Appl. Math. Comput., 2015, 217, 9790-9797. |
[16] | S. Shen, W. Liu and L. Feng, Explicit inverses of generalized Tribonacci circulant type matrices, Hacet. J. Math. Stat., 2019, 48(3), 689-699. |
[17] | Y. Sun and F. Meng, Interval criteria for oscillation of second-order differential equations with mixed nonlinearities, Appl. Math. Comput., 2008, 198, 375-381. |
[18] | K. Thomas, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, 2001. |
[19] | N. X. Thao, V. K. Tuan and N. Hong, Generalized convolution transforms and Toeplitz plus Hankel integral equation, Fract. Calc. Appl. Anal., 2008, 11(2), 153-174. |
[20] | J. Wang and F. Meng, Interval oscillation criteria for second order partial differential systems with delays, J. Comput. Appl. Math., 2008, 212, 397-405. doi: 10.1016/j.cam.2006.12.015 |
[21] | R. Xu and F. Meng, Some new weakly singular integral inequalities and their applications to fractional differential equations, Journal of Inequalities and Applications, 2016, 1, 1-16. |
[22] | B. Zuo, Z. Jiang and D. Fu, Determinants and inverses of Ppoeplitz and Ppankel matrices, Special Matrices, 2018, 6, 201-215. doi: 10.1515/spma-2018-0017 |
[23] | F. Zhang, The Schur Complement and Its Applications, Springer Science & Business Media, 2006. |
[24] | Y. Zheng and S. Shon, Exact determinants and inverses of generalized Lucas skew circulant type matrices, Appl. Math. Comput., 2015, 270, 105-113. |