2021 Volume 11 Issue 6
Article Contents

Feiting Fan, Yuqian Zhou, Xingwu Chen. TRAVELING WAVES AND THEIR EVOLUTION FOR THE ZK(N, 2N, -N) EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2959-2980. doi: 10.11948/20210074
Citation: Feiting Fan, Yuqian Zhou, Xingwu Chen. TRAVELING WAVES AND THEIR EVOLUTION FOR THE ZK(N, 2N, -N) EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2959-2980. doi: 10.11948/20210074

TRAVELING WAVES AND THEIR EVOLUTION FOR THE ZK(N, 2N, -N) EQUATION

  • Corresponding author: Email: xingwu.chen@hotmail.com(X. Chen)
  • Fund Project: The second author was supported by the China Postdoctoral Science Foundation (No. 2016M602663) and the third author was supported by National Natural Science Foundation of China (No. 11871355)
  • In this paper, using the approach of dynamical systems we investigate the traveling waves for the ZK(n, 2n, -n) equation including the types and evolution of traveling waves. The traveling wave problem is converted into the analysis of phase portraits of the corresponding traveling wave system, which is 5-parametric and has a singular line in its phase space. The orbits passing through this singular line in phase portraits are determined by a time rescaling. After converting the orbits in these phase portraits into traveling waves, we state all types of traveling waves and give at least one exact traveling wave solution for each type of bounded traveling waves in our main results. Finally, we discuss the evolution of these traveling waves among themselves when parameters vary by the bifurcations happening in the phase portraits of the traveling wave system.

    MSC: 34C37, 34C23, 58Z05, 74J30
  • 加载中
  • [1] A. Biswas, 1-soliton solution of the generalized zakharov-kuznetsov equation with nonlinear dispersion and time-dependent coefficients, Physics Letters A, 2009, 373(33), 2931-2934. doi: 10.1016/j.physleta.2009.06.029

    CrossRef Google Scholar

    [2] A. Biswas and E. Zerrad, Solitary wave solution of the zakharov-kuznetsov equation in plasmas with power law nonlinearity, Nonlinear Anal. : Real World Appl., 2010, 11(4), 3272-3274. doi: 10.1016/j.nonrwa.2009.08.007

    CrossRef Google Scholar

    [3] C. Deng, New exact solutions to the zakharov-kuznetsov equation and its generalized form, Comm. Nonlinear Sci. Num. Simul., 2010, 15(4), 857-868. doi: 10.1016/j.cnsns.2009.05.011

    CrossRef Google Scholar

    [4] Z. Du, Z. Feng and X. Zhang, Traveling wave phenomena of n-dimensional diffusive predator-prey systems, Nonlinear Anal. : Real World Appl., 2018, 41, 288-312. doi: 10.1016/j.nonrwa.2017.10.012

    CrossRef Google Scholar

    [5] Y. Fu and J. Li, Bifurcations of travelling wave solutions in three modified Camassa-Holm equations, J. Appl. Anal. Comput., 2021, 11(2), 1051-1061.

    Google Scholar

    [6] A. Johnpillai, A. Kara and A. Biswas, Symmetry solutions and reductions of a class of generalized (2+1)-dimensional zakharov-kuznetsov equation, Int. J. Nonlinear Sci. Num. Simul., 2011, 12(1-8), 45-50. doi: 10.1515/ijnsns.2011.003

    CrossRef Google Scholar

    [7] T. Kano and T. Nishida, A mathematical justification for korteweg-de vries equation and boussinesq equation of water surface waves, Osaka J. Math., 1986, 23(2), 389-413.

    Google Scholar

    [8] D. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine, 1895, 39(240), 422-443.

    Google Scholar

    [9] S. Lai, J. Yin and Y. Wu, Different physical structures of solutions for two related zakharov-kuznetsov equations, Physics Letters A, 2008, 372(43), 6461-6468. doi: 10.1016/j.physleta.2008.08.071

    CrossRef Google Scholar

    [10] J. Li, Geometric properties and exact travelling wave solutions for the generalized Burger-Fisher equation and the Sharma-Tasso-Olver equation, J. Nonlinear Model. Anal., 2019, 1(1), 1-10.

    Google Scholar

    [11] J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifurcation and Chaos, 2007, 17(11), 4049-4065. doi: 10.1142/S0218127407019858

    CrossRef Google Scholar

    [12] B. Li, Y. Chen and H. Zhang, Exact traveling wave solutions for a generalized zakharov-kuznetsov equation, Appl. Math. Comput., 2003, 146(2-3), 653-666.

    Google Scholar

    [13] J. Li, J. Wu and H. Zhu, Traveling waves for an integrable higher order kdv type wave equations, Int. J. Bifurcation and Chaos, 2006, 16(08), 2235-2260. doi: 10.1142/S0218127406016033

    CrossRef Google Scholar

    [14] J. Li, Y. Zhang and J. Liang, Bifurcations and exact traveling wave solutions for a new integrable nonlocal equation, J. Appl. Anal. Comput., 2021, 11(3), 1588-1599.

    Google Scholar

    [15] A. Ludu and J. Draayer, Patterns on liquid surfaces: cnoidal waves, compactons and scaling, Physica D: Nonlinear Phen., 1998, 123(1-4), 82-91. doi: 10.1016/S0167-2789(98)00113-4

    CrossRef Google Scholar

    [16] P. Meuris and F. Verheest, Korteweg-de vries equation for magnetosonic modes in dusty plasmas, Physics Letters A, 1996, 219(5-6), 299-302. doi: 10.1016/0375-9601(96)00473-2

    CrossRef Google Scholar

    [17] S. Munro and E. Parkes, The derivation of a modified zakharov-kuznetsov equation and the stability of its solutions, J. Plasma Physics, 1999, 62(3), 305-317. doi: 10.1017/S0022377899007874

    CrossRef Google Scholar

    [18] P. Rosenau, Nonlinear dispersion and compact structures, Phys. Rev. Lett., 1994, 73(13), 1737-1741. doi: 10.1103/PhysRevLett.73.1737

    CrossRef Google Scholar

    [19] P. Rosenau and J. Hyman, Compactons: solitons with finite wavelength, Phys. Rev. Lett., 1993, 70(5), 564-567. doi: 10.1103/PhysRevLett.70.564

    CrossRef Google Scholar

    [20] F. Tappert and C. Varma, Asymptotic theory of self-trapping of heat pulses in solids, Phys. Rev. Lett., 1970, 25(16), 1108-1111. doi: 10.1103/PhysRevLett.25.1108

    CrossRef Google Scholar

    [21] A. Wazwaz, Compactons and solitary patterns structures for variants of the KdV and the KP equations, Appl. Math. Comput., 2003, 139(1), 37-54.

    Google Scholar

    [22] A. Wazwaz, An analytic study of Compactons structures in a class of nonlinear dispersive equations, Math. Comput. Simul., 2003, 63(1), 35-44. doi: 10.1016/S0378-4754(02)00255-0

    CrossRef Google Scholar

    [23] A. Wazwaz, Special types of the nonlinear dispersive zakharov-kuznetsov equation with compactons, solitons, and periodic solutions, Int. J. Comp. Math., 2004, 81(9), 1107-1119. doi: 10.1080/00207160410001684253

    CrossRef Google Scholar

    [24] A. Wazwaz, Exact solutions with solitons and periodic structures for the zakharov-kuznetsov (zk) equation and its modified form, Comm. Nonlinear Sci. Num. Simul., 2005, 10(6), 597-606. doi: 10.1016/j.cnsns.2004.03.001

    CrossRef Google Scholar

    [25] A. Wazwaz, Explicit traveling wave solutions of variants of the k(n, n) and the zk(n, n) equations with compact and noncompact structures, Appl. Math. Comput., 2006, 173(1), 213-230.

    Google Scholar

    [26] A. Wazwaz, The extended tanh method for the zakharov-kuznetsov (zk) equation, the modified zk equation, and its generalized forms, Comm. Nonlinear Sci. Num. Simul., 2008, 13(6), 1039-1047. doi: 10.1016/j.cnsns.2006.10.007

    CrossRef Google Scholar

    [27] M. Wei and S. Yang, Periodic traveling wave solutions of zk(2, 4, -2) equation, J. Advances in Math. Comp. Sci., 2014, 4(13), 1849-1856.

    Google Scholar

    [28] S. Wu and G. Chen, Uniqueness and exponential stability of traveling wave fronts for a multi-type SIS nonlocal epidemic model, Nonlinear Anal. : Real World Appl., 2017, 36, 267-277. doi: 10.1016/j.nonrwa.2017.02.001

    CrossRef Google Scholar

    [29] B. Xia, Z. Qiao and J. Li, An integrable system with peakon, complex peakon, weak kink, and kink-peakon interactional solutions, Comm. Nonlinear Sci. Num. Simul., 2018, 63, 292-306. doi: 10.1016/j.cnsns.2018.03.019

    CrossRef Google Scholar

    [30] E. Yomba, Jacobi elliptic function solutions of the generalized zakharov-kuznetsov equation with nonlinear dispersion and t-dependent coefficients, Physics Letters A, 2010, 374(15-16), 1611-1615. doi: 10.1016/j.physleta.2010.02.026

    CrossRef Google Scholar

    [31] N. Zabusky and M. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 1965, 15(6), 240-243. doi: 10.1103/PhysRevLett.15.240

    CrossRef Google Scholar

    [32] V. Zakharov and E. Kuznetsov, On threedimensional solitons, Zhurnal Eksp. Teoret. Fiz., 1974, 66, 594-597.

    Google Scholar

    [33] Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1992.

    Google Scholar

Figures(9)

Article Metrics

Article views(2798) PDF downloads(454) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint