Citation: | He Yang. APPROXIMATE CONTROLLABILITY OF SOBOLEV TYPE FRACTIONAL EVOLUTION EQUATIONS OF ORDER α ∈ (1, 2) VIA RESOLVENT OPERATORS[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2981-3000. doi: 10.11948/20210086 |
In this paper, the existence and approximate controllability of mild solutions for $ \alpha\in(1,2) $-order fractional evolution equations of Sobolev type are investigated in abstract spaces. Firstly, we introduce a new concept of mild solution of the concerned problem. Then by using fixed point theorems and the theory of resolvent operator, some existence results are obtained. At last, the approximate controllability of the $ \alpha\in(1,2) $-order fractional evolution equation is proved without assuming the approximate controllability of corresponding linear problem. An example is presented in the last section to illustrate the obtained abstract results.
[1] | E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, University Press Facilities, Eindhoven University of Technology, 2001. |
[2] | A. Benchaabane, R. Sakthivel, Sobolev-type fractional stochastic differential equations with non-Lipschitz coefficients, J. Comput. Appl. Math., 2017, 312, 65-73. doi: 10.1016/j.cam.2015.12.020 |
[3] | Y. Chang, A. Pereira, R. Ponce, Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators, Fract. Calc. Appl. Anal., 2017, 20, 963-987. doi: 10.1515/fca-2017-0050 |
[4] | Y. Chang, Y. Pei, R. Ponce, Existence and optimal controls for fractional stochastic evolution equations of Sobolev type via fractional resolvent operators, J. Optim. Theory Appl., 2019, 182, 558-572. doi: 10.1007/s10957-018-1314-5 |
[5] | A. Debbouche, J. Nieto, Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls, Appl. Math. Comput., 2014, 245, 74-85. |
[6] | Z. Fan, Characterization of compactness for resolvents and its applications, Appl. Math. Comput., 2014, 232, 60-67. |
[7] | M. Fe$\breve{c}$kan, J. Wang, Y. Zhou, Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators, J. Optim. Theory Appl., 2013, 156, 79-95. doi: 10.1007/s10957-012-0174-7 |
[8] | Z. Liu, X. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, SIAM J. Control Optim., 2015, 53, 1920-1933. doi: 10.1137/120903853 |
[9] | K. Li, J. Peng, J. Gao, Controllability of nonlocal fractional differential systems of order $\alpha\!\in \!(1, 2]$ in Banach spaces, Rep. Math. Phys., 2013, 71, 33-43. doi: 10.1016/S0034-4877(13)60020-8 |
[10] | F. Li, J. Liang, H. Xu, Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions, J. Math. Anal. Appl., 2012, 391, 510-525. doi: 10.1016/j.jmaa.2012.02.057 |
[11] | T. Lian, Z. Fan, G. Li, Approximate controllability of semilinear fractional differential systems of order $1\!<\!q\!<\!2$ via resolvent operators, Filomat, 2017, 18, 5769-5781. |
[12] | N. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equation in abstract spaces, SIAM J. Control. Optim., 2003, 42, 1604-1622. doi: 10.1137/S0363012901391688 |
[13] | R. Ponce, Existence of mild solutions to nonlocal fractional Cauchy problems via compactness, Abstr. Appl. Anal., 2016, article ID 4567092, 15 pages. |
[14] | R. Sakthivel, N. Mahmudov, J. Nieto, Controllability for a class of fractional order neutral evolution control systems, Appl. Math. Comput., 2012, 218, 10334-10340. |
[15] | J. Wang, X. Liu, D. O'Regan, On the approximate controllability for Hilfer fractional evolution Hemivariational inequalities, Numer. Func. Anal. Optim., 2019, 40, 743-762. doi: 10.1080/01630563.2018.1499667 |
[16] | H. Yang, Y. Zhao, Controllability of fractional evolution systems of Sobolev type via resolvent operators, Bound. Value Prob., 2020, 119. |