2021 Volume 11 Issue 6
Article Contents

He Yang. APPROXIMATE CONTROLLABILITY OF SOBOLEV TYPE FRACTIONAL EVOLUTION EQUATIONS OF ORDER α ∈ (1, 2) VIA RESOLVENT OPERATORS[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2981-3000. doi: 10.11948/20210086
Citation: He Yang. APPROXIMATE CONTROLLABILITY OF SOBOLEV TYPE FRACTIONAL EVOLUTION EQUATIONS OF ORDER α ∈ (1, 2) VIA RESOLVENT OPERATORS[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2981-3000. doi: 10.11948/20210086

APPROXIMATE CONTROLLABILITY OF SOBOLEV TYPE FRACTIONAL EVOLUTION EQUATIONS OF ORDER α ∈ (1, 2) VIA RESOLVENT OPERATORS

  • Corresponding author: Email: yanghe256@163.com(H. Yang)
  • Fund Project: The author was supported by National Natural Science Foundation of China (No. 12061062)
  • In this paper, the existence and approximate controllability of mild solutions for $ \alpha\in(1,2) $-order fractional evolution equations of Sobolev type are investigated in abstract spaces. Firstly, we introduce a new concept of mild solution of the concerned problem. Then by using fixed point theorems and the theory of resolvent operator, some existence results are obtained. At last, the approximate controllability of the $ \alpha\in(1,2) $-order fractional evolution equation is proved without assuming the approximate controllability of corresponding linear problem. An example is presented in the last section to illustrate the obtained abstract results.

    MSC: 47A10, 93B05
  • 加载中
  • [1] E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, University Press Facilities, Eindhoven University of Technology, 2001.

    Google Scholar

    [2] A. Benchaabane, R. Sakthivel, Sobolev-type fractional stochastic differential equations with non-Lipschitz coefficients, J. Comput. Appl. Math., 2017, 312, 65-73. doi: 10.1016/j.cam.2015.12.020

    CrossRef Google Scholar

    [3] Y. Chang, A. Pereira, R. Ponce, Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators, Fract. Calc. Appl. Anal., 2017, 20, 963-987. doi: 10.1515/fca-2017-0050

    CrossRef Google Scholar

    [4] Y. Chang, Y. Pei, R. Ponce, Existence and optimal controls for fractional stochastic evolution equations of Sobolev type via fractional resolvent operators, J. Optim. Theory Appl., 2019, 182, 558-572. doi: 10.1007/s10957-018-1314-5

    CrossRef Google Scholar

    [5] A. Debbouche, J. Nieto, Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls, Appl. Math. Comput., 2014, 245, 74-85.

    Google Scholar

    [6] Z. Fan, Characterization of compactness for resolvents and its applications, Appl. Math. Comput., 2014, 232, 60-67.

    Google Scholar

    [7] M. Fe$\breve{c}$kan, J. Wang, Y. Zhou, Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators, J. Optim. Theory Appl., 2013, 156, 79-95. doi: 10.1007/s10957-012-0174-7

    CrossRef Google Scholar

    [8] Z. Liu, X. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, SIAM J. Control Optim., 2015, 53, 1920-1933. doi: 10.1137/120903853

    CrossRef Google Scholar

    [9] K. Li, J. Peng, J. Gao, Controllability of nonlocal fractional differential systems of order $\alpha\!\in \!(1, 2]$ in Banach spaces, Rep. Math. Phys., 2013, 71, 33-43. doi: 10.1016/S0034-4877(13)60020-8

    CrossRef Google Scholar

    [10] F. Li, J. Liang, H. Xu, Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions, J. Math. Anal. Appl., 2012, 391, 510-525. doi: 10.1016/j.jmaa.2012.02.057

    CrossRef Google Scholar

    [11] T. Lian, Z. Fan, G. Li, Approximate controllability of semilinear fractional differential systems of order $1\!<\!q\!<\!2$ via resolvent operators, Filomat, 2017, 18, 5769-5781.

    Google Scholar

    [12] N. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equation in abstract spaces, SIAM J. Control. Optim., 2003, 42, 1604-1622. doi: 10.1137/S0363012901391688

    CrossRef Google Scholar

    [13] R. Ponce, Existence of mild solutions to nonlocal fractional Cauchy problems via compactness, Abstr. Appl. Anal., 2016, article ID 4567092, 15 pages.

    Google Scholar

    [14] R. Sakthivel, N. Mahmudov, J. Nieto, Controllability for a class of fractional order neutral evolution control systems, Appl. Math. Comput., 2012, 218, 10334-10340.

    Google Scholar

    [15] J. Wang, X. Liu, D. O'Regan, On the approximate controllability for Hilfer fractional evolution Hemivariational inequalities, Numer. Func. Anal. Optim., 2019, 40, 743-762. doi: 10.1080/01630563.2018.1499667

    CrossRef Google Scholar

    [16] H. Yang, Y. Zhao, Controllability of fractional evolution systems of Sobolev type via resolvent operators, Bound. Value Prob., 2020, 119.

    Google Scholar

Article Metrics

Article views(2626) PDF downloads(466) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint