2021 Volume 11 Issue 6
Article Contents

Chaoxiong Du, Wentao Huang. HOPF BIFURCATION AT A DEGENERATE SINGULAR POINT IN 3-DIMENSIONAL VECTOR FIELD[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 3001-3013. doi: 10.11948/20210090
Citation: Chaoxiong Du, Wentao Huang. HOPF BIFURCATION AT A DEGENERATE SINGULAR POINT IN 3-DIMENSIONAL VECTOR FIELD[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 3001-3013. doi: 10.11948/20210090

HOPF BIFURCATION AT A DEGENERATE SINGULAR POINT IN 3-DIMENSIONAL VECTOR FIELD

  • Corresponding author: Email: ducx123@126.com(C. Du) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12061016) and the Research Fund of Hunan provincial education department(18A525) and the Hunan provincial Natural Science Foundation of China (2020JJ4630)
  • The work of this paper focuses on investigating limit cycle bifurcation for a degenerate singular point in 3-Dimensional vector fields. By making two appropriate transformations and making use of singular values methods to compute focal values carefully, we give the expressions of the first five Lyapunov constants at the origin that is a degenerate singular point. Moreover, we obtain the considered system can bifurcate 5 limit cycles near the origin. In terms of results on limit cycle bifurcation from degenerate singular point in 3-Dimensional vector field, it is less seen in published references..

    MSC: 34C07, 34C23
  • 加载中
  • [1] Y. An and M. Han, On the number of limit cycles near a homoclinic loop with a nilpotent singular point, J. Diff. Eqs., 2015, 258(9), 3194-3247. doi: 10.1016/j.jde.2015.01.006

    CrossRef Google Scholar

    [2] Y. An and C. Wang, Bifurcation of one-parameter periodic orbits of three-dimensional differential system, Int. J. Bifurcation and Chaos., 2014, 23, 1350121.

    Google Scholar

    [3] A. Buica, I. A. Garcia, and S. Maza, Centers in a Quadratic System Obtained from a Scalar Third Order Differential Equation, in: S. Pinelas, M. Chipot, Z. Dosla (Eds), Differential and Difference Equations with Applications, Springer Proc. Math. Stat., Springer, New York, 2013, pp. 405-410.

    Google Scholar

    [4] A. Buica, I. A. Garcia and S. Maza, Multiple hopf bifurcation in $R. 3$ and inverse Jacobi multipliers, J. Diff. Eqs., 2014, 256(1), 310-325. doi: 10.1016/j.jde.2013.09.006

    CrossRef Google Scholar

    [5] H. Chen, Y. Liu and X. Zeng, Center conditions and bifurcation of limit cycles at degenerate singular points in a quintic polynomial differential system, Bull. Sci. Math., 2005, 129(2), 127-138. doi: 10.1016/j.bulsci.2004.09.004

    CrossRef Google Scholar

    [6] X. Cen, Y. Zhao and H. Liang, Abelian integrals and limit cycles for a class of cubic polynomial vector fields of Lotka-Volterra type with a rational first integral of degree two, J. Math. Anal. Appl., 2015, 425(2), 788-806. doi: 10.1016/j.jmaa.2014.12.064

    CrossRef Google Scholar

    [7] C. Du, W. Huang and Q. Zhang, Center problem and the bifurcation of limit cycles for a cubic polynomial system, Appl. Math. Model., 2015, 39(17), 5200-5215. doi: 10.1016/j.apm.2015.03.037

    CrossRef Google Scholar

    [8] C. Du, Y. Liu and W. Huang, Limit cycles bifurcations for a class of Kolmogorov model in symmetrical vector field, Int. J. Bifurcation and Chaos., 2014, 24(4), 1450040.

    Google Scholar

    [9] C. Du, Y. Liu and W. Huang, Limit cycles bifurcations behavior for a class of quartic Kolmogorov model in symmetrical vector field, Appl. Math. Model., 2016, 40(5-6), 4094-4108. doi: 10.1016/j.apm.2015.11.029

    CrossRef Google Scholar

    [10] C. Du, Y. Liu and Q. Zhang, Limit cycles in a class of quartic Kolmogorov model with three positive equilibrium points, Int. J. Bifurcation and Chaos., 2015, 25(4), 1550080.

    Google Scholar

    [11] C. Du, Q. Wang and W. Huang, Three-Dimensional hopf bifurcation for a class of cubic Kolmogorov model, Int. J. Bifurcation and Chaos., 2014, 24(3), 1450036. doi: 10.1142/S0218127414500369

    CrossRef Google Scholar

    [12] C. Du, Q. Wang and Y. Liu, Limit cycles bifurcations for a class of 3-Dimensional quadratic systems, Acta Appl. Math., 2015, 136, 1-18. doi: 10.1007/s10440-014-9881-4

    CrossRef Google Scholar

    [13] A. Gasull, C. Li and J. Torregrosa, Limit cycles for 3-monomial differential equations, J. Math. Anal. Appl., 2015, 428(2), 735-749. doi: 10.1016/j.jmaa.2015.03.039

    CrossRef Google Scholar

    [14] F. Geng and H. Lian, Bifurcation of limit cycles from a quasi-Homogeneous degenerate center, Int. J. Bifurcation and Chaos., 2015, 25(1), 1550007. doi: 10.1142/S0218127415500078

    CrossRef Google Scholar

    [15] Z. Hu, M. Aldazharova, T. M. Aldibekov and V. G. Romanovski, Integrability of 3-dim polynomial systems with three invariant planes, Nonlinear Dynam., 2013, 74(8), 1077-1092.

    Google Scholar

    [16] Z. Hu, M. Han and V. G. Romanovski, Local integrability of a family of three-dimensional quadratic systems, Phys. D., 2013, 265, 78-86. doi: 10.1016/j.physd.2013.09.001

    CrossRef Google Scholar

    [17] M. Han and W. Lu, Hopf bifurcation of limit cycles by perturbing piecewise integrable systems, Bulletin. Sci. Math., 2020, 161, 102866. doi: 10.1016/j.bulsci.2020.102866

    CrossRef Google Scholar

    [18] M. Han and F. Jiang, Qualitative Analysis of Crossing Limit Cycles in Discontinuous LišŠnard-Type Differential Systems, J. Nonl. Mod. Anal., 2019, 1, 527-543.

    Google Scholar

    [19] M. Han and S. Liu, Further studies on limit cycle bifurcations for piecewise smooth near-Hamiltonian sysytem with multiple parameters, J. Appl. Anal. Comput., 2020, 10(2), 816-829.

    Google Scholar

    [20] X. Liu and M. Han, Bifurcation of periodic orbits of a three-dimensional system, Chinese Ann. Math., 2005, 26, 253-274. doi: 10.1142/S025295990500021X

    CrossRef Google Scholar

    [21] Y. Liu and J. Li, Z$_2$-equivariant cubic system which yields 13 limit cycles, Acta Math. Appl. Sin. Engl. Ser., 2014, 30, 781-800. doi: 10.1007/s10255-014-0420-x

    CrossRef Google Scholar

    [22] J. Llibre and C. Pantazi, Limit cycles bifurcating from a degenerate center, Math. Comput. Simul., 2016, 120, 1-11. doi: 10.1016/j.matcom.2015.05.005

    CrossRef Google Scholar

    [23] F. Li, Y. Liu and Y. Liu, Bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z2-equivariant cubic vector fields, J. Diff. Eqs., 2018, 265(10), 4965-4992. doi: 10.1016/j.jde.2018.06.027

    CrossRef Google Scholar

    [24] F. Li, Y. Liu, Y. Liu and P. Yu, Complex isochronous centers and linearization transformations for cubic Z2-equivariant planar systems, J. Diff. Eqs., 2020, 268(7), 3819-3847. doi: 10.1016/j.jde.2019.10.011

    CrossRef Google Scholar

    [25] F. Li, Y. Jin and Y. Tian, Integrability and linearizability of cubic Z2 systems with non-resonant singular points, J. Diff. Eqs., 2020, 269(10), 9026-9049. doi: 10.1016/j.jde.2020.06.036

    CrossRef Google Scholar

    [26] F. Li and P. Yu, A note on the paper "Center and isochronous center conditions for switching systems associated with elementary singular points", Commun. Nonlin. Sci. Numer. Simul., 2020, 90, 105405. doi: 10.1016/j.cnsns.2020.105405

    CrossRef Google Scholar

    [27] V. G. Romanovski, M. Mencinger and B. Fercec, Investigation of center manifolds of three-dimensional systems using computer algebra, Program. Comput. Softw., 2013, 39, 67-73. doi: 10.1134/S0361768813020072

    CrossRef Google Scholar

    [28] V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhauser Boston, Inc. Boston, MA., 2009.

    Google Scholar

    [29] L. Sheng and M. Han, Bifurcation of limit cycle from a compound loop with five saddles, J. Appl. Anal. Comput., 2019, 9(6), 2482-2495.

    Google Scholar

    [30] Y. Wu and C. Zhang, Bifurcation of limit cycles and pseudo-isochronous center at degenerate singular point in a septic system, Appl. Math. Comput., 2012, 218(17), 8513-8525.

    Google Scholar

    [31] P. Yu and M. Han, Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation, Appl. Math. Lett., 2015, 44, 17-20. doi: 10.1016/j.aml.2014.12.010

    CrossRef Google Scholar

    [32] P. Yu and Y. Tian, Twelve limit cycles around a singular point in a planar cubic-degree polynomial system, Commun. Nonlin. Sci. Numer. Simul., 2014, 19(8), 2690-2705. doi: 10.1016/j.cnsns.2013.12.014

    CrossRef Google Scholar

Article Metrics

Article views(2695) PDF downloads(430) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint