Citation: | Chaoxiong Du, Wentao Huang. HOPF BIFURCATION AT A DEGENERATE SINGULAR POINT IN 3-DIMENSIONAL VECTOR FIELD[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 3001-3013. doi: 10.11948/20210090 |
The work of this paper focuses on investigating limit cycle bifurcation for a degenerate singular point in 3-Dimensional vector fields. By making two appropriate transformations and making use of singular values methods to compute focal values carefully, we give the expressions of the first five Lyapunov constants at the origin that is a degenerate singular point. Moreover, we obtain the considered system can bifurcate 5 limit cycles near the origin. In terms of results on limit cycle bifurcation from degenerate singular point in 3-Dimensional vector field, it is less seen in published references..
[1] | Y. An and M. Han, On the number of limit cycles near a homoclinic loop with a nilpotent singular point, J. Diff. Eqs., 2015, 258(9), 3194-3247. doi: 10.1016/j.jde.2015.01.006 |
[2] | Y. An and C. Wang, Bifurcation of one-parameter periodic orbits of three-dimensional differential system, Int. J. Bifurcation and Chaos., 2014, 23, 1350121. |
[3] | A. Buica, I. A. Garcia, and S. Maza, Centers in a Quadratic System Obtained from a Scalar Third Order Differential Equation, in: S. Pinelas, M. Chipot, Z. Dosla (Eds), Differential and Difference Equations with Applications, Springer Proc. Math. Stat., Springer, New York, 2013, pp. 405-410. |
[4] | A. Buica, I. A. Garcia and S. Maza, Multiple hopf bifurcation in $R. 3$ and inverse Jacobi multipliers, J. Diff. Eqs., 2014, 256(1), 310-325. doi: 10.1016/j.jde.2013.09.006 |
[5] | H. Chen, Y. Liu and X. Zeng, Center conditions and bifurcation of limit cycles at degenerate singular points in a quintic polynomial differential system, Bull. Sci. Math., 2005, 129(2), 127-138. doi: 10.1016/j.bulsci.2004.09.004 |
[6] | X. Cen, Y. Zhao and H. Liang, Abelian integrals and limit cycles for a class of cubic polynomial vector fields of Lotka-Volterra type with a rational first integral of degree two, J. Math. Anal. Appl., 2015, 425(2), 788-806. doi: 10.1016/j.jmaa.2014.12.064 |
[7] | C. Du, W. Huang and Q. Zhang, Center problem and the bifurcation of limit cycles for a cubic polynomial system, Appl. Math. Model., 2015, 39(17), 5200-5215. doi: 10.1016/j.apm.2015.03.037 |
[8] | C. Du, Y. Liu and W. Huang, Limit cycles bifurcations for a class of Kolmogorov model in symmetrical vector field, Int. J. Bifurcation and Chaos., 2014, 24(4), 1450040. |
[9] | C. Du, Y. Liu and W. Huang, Limit cycles bifurcations behavior for a class of quartic Kolmogorov model in symmetrical vector field, Appl. Math. Model., 2016, 40(5-6), 4094-4108. doi: 10.1016/j.apm.2015.11.029 |
[10] | C. Du, Y. Liu and Q. Zhang, Limit cycles in a class of quartic Kolmogorov model with three positive equilibrium points, Int. J. Bifurcation and Chaos., 2015, 25(4), 1550080. |
[11] | C. Du, Q. Wang and W. Huang, Three-Dimensional hopf bifurcation for a class of cubic Kolmogorov model, Int. J. Bifurcation and Chaos., 2014, 24(3), 1450036. doi: 10.1142/S0218127414500369 |
[12] | C. Du, Q. Wang and Y. Liu, Limit cycles bifurcations for a class of 3-Dimensional quadratic systems, Acta Appl. Math., 2015, 136, 1-18. doi: 10.1007/s10440-014-9881-4 |
[13] | A. Gasull, C. Li and J. Torregrosa, Limit cycles for 3-monomial differential equations, J. Math. Anal. Appl., 2015, 428(2), 735-749. doi: 10.1016/j.jmaa.2015.03.039 |
[14] | F. Geng and H. Lian, Bifurcation of limit cycles from a quasi-Homogeneous degenerate center, Int. J. Bifurcation and Chaos., 2015, 25(1), 1550007. doi: 10.1142/S0218127415500078 |
[15] | Z. Hu, M. Aldazharova, T. M. Aldibekov and V. G. Romanovski, Integrability of 3-dim polynomial systems with three invariant planes, Nonlinear Dynam., 2013, 74(8), 1077-1092. |
[16] | Z. Hu, M. Han and V. G. Romanovski, Local integrability of a family of three-dimensional quadratic systems, Phys. D., 2013, 265, 78-86. doi: 10.1016/j.physd.2013.09.001 |
[17] | M. Han and W. Lu, Hopf bifurcation of limit cycles by perturbing piecewise integrable systems, Bulletin. Sci. Math., 2020, 161, 102866. doi: 10.1016/j.bulsci.2020.102866 |
[18] | M. Han and F. Jiang, Qualitative Analysis of Crossing Limit Cycles in Discontinuous LišŠnard-Type Differential Systems, J. Nonl. Mod. Anal., 2019, 1, 527-543. |
[19] | M. Han and S. Liu, Further studies on limit cycle bifurcations for piecewise smooth near-Hamiltonian sysytem with multiple parameters, J. Appl. Anal. Comput., 2020, 10(2), 816-829. |
[20] | X. Liu and M. Han, Bifurcation of periodic orbits of a three-dimensional system, Chinese Ann. Math., 2005, 26, 253-274. doi: 10.1142/S025295990500021X |
[21] | Y. Liu and J. Li, Z$_2$-equivariant cubic system which yields 13 limit cycles, Acta Math. Appl. Sin. Engl. Ser., 2014, 30, 781-800. doi: 10.1007/s10255-014-0420-x |
[22] | J. Llibre and C. Pantazi, Limit cycles bifurcating from a degenerate center, Math. Comput. Simul., 2016, 120, 1-11. doi: 10.1016/j.matcom.2015.05.005 |
[23] | F. Li, Y. Liu and Y. Liu, Bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z2-equivariant cubic vector fields, J. Diff. Eqs., 2018, 265(10), 4965-4992. doi: 10.1016/j.jde.2018.06.027 |
[24] | F. Li, Y. Liu, Y. Liu and P. Yu, Complex isochronous centers and linearization transformations for cubic Z2-equivariant planar systems, J. Diff. Eqs., 2020, 268(7), 3819-3847. doi: 10.1016/j.jde.2019.10.011 |
[25] | F. Li, Y. Jin and Y. Tian, Integrability and linearizability of cubic Z2 systems with non-resonant singular points, J. Diff. Eqs., 2020, 269(10), 9026-9049. doi: 10.1016/j.jde.2020.06.036 |
[26] | F. Li and P. Yu, A note on the paper "Center and isochronous center conditions for switching systems associated with elementary singular points", Commun. Nonlin. Sci. Numer. Simul., 2020, 90, 105405. doi: 10.1016/j.cnsns.2020.105405 |
[27] | V. G. Romanovski, M. Mencinger and B. Fercec, Investigation of center manifolds of three-dimensional systems using computer algebra, Program. Comput. Softw., 2013, 39, 67-73. doi: 10.1134/S0361768813020072 |
[28] | V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach, Birkhauser Boston, Inc. Boston, MA., 2009. |
[29] | L. Sheng and M. Han, Bifurcation of limit cycle from a compound loop with five saddles, J. Appl. Anal. Comput., 2019, 9(6), 2482-2495. |
[30] | Y. Wu and C. Zhang, Bifurcation of limit cycles and pseudo-isochronous center at degenerate singular point in a septic system, Appl. Math. Comput., 2012, 218(17), 8513-8525. |
[31] | P. Yu and M. Han, Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation, Appl. Math. Lett., 2015, 44, 17-20. doi: 10.1016/j.aml.2014.12.010 |
[32] | P. Yu and Y. Tian, Twelve limit cycles around a singular point in a planar cubic-degree polynomial system, Commun. Nonlin. Sci. Numer. Simul., 2014, 19(8), 2690-2705. doi: 10.1016/j.cnsns.2013.12.014 |