2021 Volume 11 Issue 6
Article Contents

Siyu Gao. A SHADOWING LEMMA FOR RANDOM DYNAMICAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 3014-3030. doi: 10.11948/20210100
Citation: Siyu Gao. A SHADOWING LEMMA FOR RANDOM DYNAMICAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 3014-3030. doi: 10.11948/20210100

A SHADOWING LEMMA FOR RANDOM DYNAMICAL SYSTEMS

  • This paper proves a shadowing lemma for the random dynamical systems generated by a class of random parabolic equations. We propose random versions of Newton's method and solution-tracing theory to obtain our main theorem. This result applies to C1 random dynamical systems on Banach space without assuming the corresponding map to be a diffeomorphism. We also provide sufficient conditions to assure the measurability of the resulting solution. This measurability can be verified as long as a proper subsequence of the initial iteration sequence is measurable.

    MSC: 37H05, 37C50
  • 加载中
  • [1] D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, Proc. Steklov Inst. Math., 1967, 90.

    Google Scholar

    [2] L. Arnold, Random Dynamical Systems, Springer, New York, 1998. Shadowing lemma for RDS 3029

    Google Scholar

    [3] A. J. Bento and H. Vilarinho, Invariant manifolds for random dynamical systems on Banach spaces exhibiting generalized dichotomies, J. Dynam. Diff. Eqs., 2021, 33(1), 111–133. doi: 10.1007/s10884-020-09888-7

    CrossRef Google Scholar

    [4] R. Bowen, ω-limit sets for Axiom A diffeomorphisms, J. Diff. Eqs., 1975, 18(2), 333–339. doi: 10.1016/0022-0396(75)90065-0

    CrossRef Google Scholar

    [5] T. Caraballo, J. Duan, K. Lu and B. Schmalfuβ, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Studies, 2010, 10(1), 23–52. doi: 10.1515/ans-2010-0102

    CrossRef Google Scholar

    [6] S. N. Chow, X. Lin and K. J. Palmer, A shadowing lemma with applications to semilinear parabolic equations, SIAM J. Math. Anal., 1989, 20(3), 547–557. doi: 10.1137/0520038

    CrossRef Google Scholar

    [7] S. N. Chow and E. S. Van Vleck, A shadowing lemma for random diffeomorphisms, Random Comput. Dynam., 1992, 1(2), 197–218.

    Google Scholar

    [8] S. N. Chow and E. S. Van Vleck, A shadowing lemma approach to global error analysis for initial value ODEs, SIAM J. Sci. Comput., 1994, 15(4), 959–976. doi: 10.1137/0915058

    CrossRef Google Scholar

    [9] B. A. Coomes, H. Koçak and K. J. Palmer, A Shadowing Theorem for ordinary differential equations, Z. Angew. Math. Phys., 1995, 46(1), 85–106. doi: 10.1007/BF00952258

    CrossRef Google Scholar

    [10] M. Dellnitz and I. Melbourne, A note on the shadowing lemma and symmetric periodic points, Nonlinearity, 1995, 8(6), 1067–1075. doi: 10.1088/0951-7715/8/6/010

    CrossRef Google Scholar

    [11] A. Delshams, M. Gidea and P. Roldán, Transition map and shadowing lemma for normally hyperbolic invariant manifolds, Discrete Contin. Dynam. Systems, 2013, 33(3), 1089–1112. doi: 10.3934/dcds.2013.33.1089

    CrossRef Google Scholar

    [12] A. Delshams, A. Simon and P. Zgliczyński, Shadowing of non-transversal heteroclinic chains, J. Diff. Eqs., 2018, 264(5), 3619–3663. doi: 10.1016/j.jde.2017.11.024

    CrossRef Google Scholar

    [13] L. Deng and D. Xiao, Global stable and unstable manifolds for a class of semilinear equations with sectorially dichotomous operator, J. Appl. Anal. Comput., 2019, 9(1), 373–399.

    Google Scholar

    [14] G. B. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd Edn, Wiley, New York, 2007.

    Google Scholar

    [15] J. E. Franke and J. F. Selgrade, Hyperbolicity and chain recurrence, J. Diff. Eqs., 1977, 26(1), 27–36. doi: 10.1016/0022-0396(77)90096-1

    CrossRef Google Scholar

    [16] S. Gan, A generalized shadowing lemma, Discrete Contin. Dynam. Systems, 2002, 8(3), 627–632. doi: 10.3934/dcds.2002.8.627

    CrossRef Google Scholar

    [17] J. M. Guckenheimer, J. K. Moser and S. E. Newhouse, Dynamical Systems, Birkhäuser, Boston, 1980.

    Google Scholar

    [18] V. M. Gundlach, Random homoclinic orbits, Random Comput. Dyn., 1995, 3(1&2), 1–33.

    Google Scholar

    [19] B. Han and X. Wen, A shadowing lemma for quasi-hyperbolic strings of flows, J. Diff. Eqs., 2018, 264(1), 1–29. doi: 10.1016/j.jde.2017.08.065

    CrossRef Google Scholar

    [20] L. He, Y. Zhu and H. Zheng, Shadowing in random dynamical systems, Discrete Contin. Dynam. Systems, 2005, 12(2), 355–362. doi: 10.3934/dcds.2005.12.355

    CrossRef Google Scholar

    [21] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840, Springer-Verlag, Berlin, 1981.

    Google Scholar

    [22] M. Li, Orbital shadowing and stability for vector fields, J. Diff. Eqs., 2020, 269(2), 1360–1382 doi: 10.1016/j.jde.2020.01.026

    CrossRef Google Scholar

    [23] Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space, Mem. Amer. Math. Soc., 2010, 206(967).

    Google Scholar

    [24] X. Lin, Shadowing lemma and singularly perturbed boundary value problems, SIAM J. Appl. Math., 1989, 49(1), 26–54. doi: 10.1137/0149002

    CrossRef Google Scholar

    [25] K. J. Palmer, Exponential dichotomies, the shadowing lemma and transversal homoclinic points, Dynamics Reported, 1988, 1, 265–306.

    Google Scholar

    [26] K. J. Palmer, Shadowing and Silnikov chaos, Nonlinear Anal., 1996, 27(9), 1075–1093. doi: 10.1016/0362-546X(95)00042-T

    CrossRef Google Scholar

    [27] S. Y. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Mathematics 1706, Springer, New York, 1999.

    Google Scholar

    [28] C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mountain J. Math., 1977, 7(3), 425–438.

    Google Scholar

    [29] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 1967, 73, 747–817. doi: 10.1090/S0002-9904-1967-11798-1

    CrossRef Google Scholar

    [30] L. Zhou, K. Lu and W. Zhang, Roughness of tempered exponential dichotomies for infinite-dimensional random difference equations, J. Diff. Eqs., 2013, 254(9), 4024–4046. doi: 10.1016/j.jde.2013.02.007

    CrossRef Google Scholar

Article Metrics

Article views(2838) PDF downloads(598) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint