Citation: | Woo Jin Joe, Seong Jin Kim, Yun-Ho Kim, Min Wook Oh. MULTIPLICITY OF SOLUTIONS FOR DOUBLE PHASE EQUATIONS WITH CONCAVE-CONVEX NONLINEARITIES[J]. Journal of Applied Analysis & Computation, 2021, 11(6): 2921-2946. doi: 10.11948/20210063 |
This paper is devoted to the study of the L∞-bound of solutions to a double-phase problem with concave-convex nonlinearities by applying the De Giorgi's iteration method and the localization method. Employing this and a variant of Ekeland's variational principle, we provide the existence of at least two distinct nontrivial solutions belonging to L∞-space when the convex term does not satisfy the Ambrosetti-Rabinowitz condition in general. In addition, our problem has a sequence of multiple small energy solutions whose L∞-norms converge to zero. To achieve this result, we utilize the modified functional method and the dual fountain theorem as the main tools.
[1] | A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 1994, 122, 519-543. doi: 10.1006/jfan.1994.1078 |
[2] | A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14, 349-381. doi: 10.1016/0022-1236(73)90051-7 |
[3] | J. H. Bae and Y. H. Kim, Critical points theorems via the generalized Ekeland variational principle and its application to equations of p(x)-Laplace type in $\mathbb{R}. {N}$, Taiwanese J. Math., 2019, 23, 193-229. |
[4] | P. Baroni, M. Colombo and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., 2015, 121, 206-222. doi: 10.1016/j.na.2014.11.001 |
[5] | C. Brändle, E. Colorado E, A. de Pablo and U. Sánchez, A concave–convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh, 2013, 143, 39-71. doi: 10.1017/S0308210511000175 |
[6] | M. L. M. Carvalho, E. D. da Silva and C. Goulart, Quasilinear elliptic problems with concave–convex nonlinearities, Commun. Contemp. Math., 2017, 19, 1650050, 1-25. doi: 10.1142/S0219199716500504 |
[7] | M. Cencelj, V. D. Radulescu and D. Repovs, Double phase problems with variable growth, Nonlinear Anal., 2018, 177, 270-287. doi: 10.1016/j.na.2018.03.016 |
[8] | W. Chen and S. Deng, The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities, Z. Angew. Math. Phys., 2015, 66, 1387-1400. doi: 10.1007/s00033-014-0486-6 |
[9] | E. B. Choi, J. M. Kim and Y. H. Kim, Infinitely many solutions for equations of p(x)-Laplace type with the nonlinear Neumann boundary condition, Proc. Roy. Soc. Edinburgh Sect. A, 2018, 148, 1-31. doi: 10.1017/S0308210517000117 |
[10] | F. Colasuonno and M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 2016, 195, 1917-1959. doi: 10.1007/s10231-015-0542-7 |
[11] | M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 2015, 215, 443-496. doi: 10.1007/s00205-014-0785-2 |
[12] | M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 2015, 218, 219-273. doi: 10.1007/s00205-015-0859-9 |
[13] | G. Dai and R. Hao, Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl., 2009, 359, 275-284. doi: 10.1016/j.jmaa.2009.05.031 |
[14] | E. D. da Silva, M. L. M. Carvalho, J. V. Gonçalves and C. Goulart, Critical quasilinear elliptic problems using concave-convex nonlinearities, Ann. Mat. Pura Appl., 2019, 198, 693-726. doi: 10.1007/s10231-018-0794-0 |
[15] | M. Fabian, P. Habala, P. Hajék, V. Montesinos and V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis, Springer, New York, 2011. |
[16] | X. Fan and C. Guan, Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications, Nonlinear Anal., 2010, 73, 163-175. doi: 10.1016/j.na.2010.03.010 |
[17] | Z. Guo, Elliptic equations with indefinite concave nonlinearities near the origin, J. Math. Anal. Appl., 2010, 367, 273-277. doi: 10.1016/j.jmaa.2010.01.012 |
[18] | H. P. Heinz, Free Ljusternik-Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems, J. Differential Equations, 1987, 66, 263-300. doi: 10.1016/0022-0396(87)90035-0 |
[19] | K. Ho and I. Sim, Existence and muliplicity of solutions for degenerate p(x)-Laplace equations involving concave-convex type nonlinearities with two parameters, Taiwanese J. Math., 2015, 19, 1469-1493. |
[20] | I. H. Kim, Y. H. Kim, C. Li and K. Park, Multiplicity of solutions for quasilinear Schrödinger type equations with the concave-convex nonlinearities, J. Korean Math. Soc. (in press). |
[21] | I. H. Kim, Y. H. Kim and K. Park, Existence and multiplicity of solutions for Schrödinger-Kirchhoff type problems involving the fractional p(·)-Laplacian in $\mathbb{R}. {N}$, Bound. Value Probl., 2020, 121, 1-24. |
[22] | J. M. Kim, Y. H. Kim and J. Lee, Existence and multiplicity of solutions for Kirchhoff-Schrödinger type equations involving p(x)-Laplacian on the whole space, Nonlinear Anal. Real World Appl., 2019, 45, 620-649. doi: 10.1016/j.nonrwa.2018.07.016 |
[23] | J. M. Kim, Y. H. Kim and J. Lee, Radially symmetric solutions for quasilinear elliptic equations involving nonhomogeneous operators in Orlicz-Sobolev space setting, Acta Math. Sin., 2020, 40B, 1679-1699. doi: 10.1007/s10473-020-0605-8?utm_source=TrendMD |
[24] | Y. H. Kim, Infinitely many small energy solutions for equations involving the fractional Laplacian in $\mathbb{R}. {N}$, J. Korean Math. Soc., 2018, 55, 1269-1283. |
[25] | Y. H. Kim, Existence and multiplicity of solutions to a class of fractional p-Laplacian equations of Schrödinger type with concave-convex nonlinearities in $\mathbb{R}. {N}$, Mathematics, 2020, 8, 1-17. |
[26] | W. Liu and G. Dai, Existence and multiplicity results for double phase problem, J. Differential Equations, 2018, 265, 4311-4334. doi: 10.1016/j.jde.2018.06.006 |
[27] | O. H. Miyagaki, E. Juárez Hurtado and R. S. Rodrigues, Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions, J. Dyn. Diff. Equat., 2018, 30, 405-432. doi: 10.1007/s10884-016-9542-6 |
[28] | D. Naimen, Existence of infinitely many solutions for nonlinear Neumann problems with indefinite coefficients, Electron. J. Differential Equations., 2014, 2014, 1-12. |
[29] | B. T. K. Oanh and D. N. Phuong, On multiplicity solutions for a non-local fractional p-Laplace equation, Complex Var. Elliptic Equ., 2020, 65, 801-822. doi: 10.1080/17476933.2019.1631287 |
[30] | V. D. Radulescu, Isotropic and anisotropic double-phase problems: old and new, Opuscula Math., 2019, 39, 259-279. doi: 10.7494/OpMath.2019.39.2.259 |
[31] | M. Shao and A. Mao, Schrödinger-Poisson system with concave-convex nonlinearities, J. Math. Phys., 2019, 60, 061504, 1-11. doi: 10.1063/1.5087490 |
[32] | Z. Tan and F. Fang, On superlinear p(x)-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal., 2012, 75, 3902-3915. doi: 10.1016/j.na.2012.02.010 |
[33] | K. Teng, Multiple solutions for a class of fractional Schrödinger equations in $\mathbb{R}. {N}$, Nonlinear Anal. Real World Appl., 2015, 21, 76-86. doi: 10.1016/j.nonrwa.2014.06.008 |
[34] | V. Vergara and R. Zacher, A priori bounds for degenerate and singular evolutionary partial integro-differential equations, Nonlinear Anal., 2010, 73, 3572-3585. doi: 10.1016/j.na.2010.07.039 |
[35] | Z. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, Nonlinear Differ. Equ. Appl., 2001, 8, 15-33. doi: 10.1007/PL00001436 |
[36] | M. Willem, Minimax Theorems, Birkhauser, Basel, 1996. |
[37] | T. Wu, Multiple positive solutions for a class of concave–convex elliptic problems in $\mathbb{R}. {N}$ involving sign-changing weight, J. Funct. Anal., 2010, 258, 99-131. doi: 10.1016/j.jfa.2009.08.005 |
[38] | M. Xiang, B. Zhang and M. Ferrara, Multiplicity results for the non-homogeneous fractional p-Kirchhoff equations with concave–convex nonlinearities, Proc. R. Soc. A., 2015, 471(20150034), 1-14. |
[39] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR, Ser. Mat., 1986, 50, 675-710. |
[40] | V. V. Zhikov, On Lavrentiev's phenomenon, Russ, J. Math. Phys., 1995, 3, 249-269. |
[41] | V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 1997, 5, 105-116. |
[42] | V. V. Zhikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994. |
[43] | C. Zhong, A generalization of Ekeland's variational principle and application to the study of relation between the weak P.S. condition and coercivity, Nonlinear Anal., 1997, 29, 1421-1431. doi: 10.1016/S0362-546X(96)00180-0 |