Citation: | Huantong Chen, Bo Tao, Danting Ye. NONEXISTENCE OF STABLE SOLUTIONS OF THE WEIGHTED LANE-EMDEN SYSTEM[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2133-2142. doi: 10.11948/20210069 |
The aim of this paper is to study the stability of the positive solutions of the weighted Lane-Emden system. By applying the structure of the $ m$-biharmonic weighted equation, we prove the nonexistence of positive stable solutions for the case $ 0<p<1<p^{-1}<\theta$.
[1] | D. Bonheure, E. M. Dos Santos and M. Ramos, Symmetry breaking for ground state solutions of some strongly coupled elliptic systems, Funct. Anal., 2013, 264, 62–96. doi: 10.1016/j.jfa.2012.10.002 |
[2] | C. Cowan, Liouville theorems for stable lane emden systems and biharmonic problems, Nonlinearity, 2013, 26, 2357–2371. doi: 10.1088/0951-7715/26/8/2357 |
[3] | C. Cowan and N. Ghoussoub, Regularity of semi-stable solutions to fourth order nonlinear eigenvalue problems on general domains, Calc. Var. PDEs., 2014, 49, 291–305. doi: 10.1007/s00526-012-0582-4 |
[4] | W. Chen, L. Dupaigne and M. Ghergu, A new critical curve for the Lane-Emden system, Discrete Contin. Dyn. Syst., 2014, 34, 2469–79. doi: 10.3934/dcds.2014.34.2469 |
[5] | J. Dávila, L. Dupaigne, K. Wang and J. Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math., 2014, 258, 240–285. doi: 10.1016/j.aim.2014.02.034 |
[6] | E. M. Dos Santos, Multiplicity of solutions for a fourth-order quasilinear nonhomgeneous equation, Math. Anal. Appl., 2008, 342, 277–97. doi: 10.1016/j.jmaa.2007.11.056 |
[7] | L. Dupaigne, M. Ghergu, O. Goubet and G. Warnault, The Gel¡¯fand problem for the biharmonic operator, Arch. Ration. Mech. Anal., 2013, 208, 725–752. doi: 10.1007/s00205-013-0613-0 |
[8] | A. Farina, On the classification of solutions of Lane-Emden equation on unbounded domains of $ \mathbb{R}^{N}$, J. Math. Pures Appl., 2007, 87, 537–561. doi: 10.1016/j.matpur.2007.03.001 |
[9] | M. Fazly, Liouville type theorems for stable solutions of certain elliptic systems, Adv. Nonlinear Stud., 2012, 12, 1–17. |
[10] | M. Fazly and J. Wei, On stable solution of the fractional Hénon-Lane-Emden equation, Commun. Contemp. Math., 2016, 18, 165–5. |
[11] | Z. Guo and J. Wei, Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents, Discrete Contin. Dyn. Syst., 2014, 34, 2561–2580. doi: 10.3934/dcds.2014.34.2561 |
[12] | C. Gui, W. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $ \mathbb{R}^{N}$, Comm. Pure Appl. Math., 1992, 45, 1153–1181. doi: 10.1002/cpa.3160450906 |
[13] | H. Hajlaoui, A. Harrabi and D. Ye, On the stable solutions of the biharmonic problem with polynomial growth, Pacific J. Math., 2014, 270, 79–93. doi: 10.2140/pjm.2014.270.79 |
[14] | H. Hajlaoui, A. Harrabi and F. Mtiri, Liouville theorems for stable solutions of the weighted LanešCEmden system, Discrete Contin. Dyn. Syst., 2017, 37, 265–279. doi: 10.3934/dcds.2017011 |
[15] | L. Hu, A monotonicity formula and Liouville-type theorems for stable solutions of the weighted elliptic system, Adv. Differ. Equ., 2017, 22, 49–76. |
[16] | L. Hu, Liouville type results for semi-stable solutions of the weighted LanešC Emden system, J. Math. Anal. Appl., 2015, 432, 429–440. doi: 10.1016/j.jmaa.2015.06.032 |
[17] |
L. Hu, Liouville type theorems for stable solutions of the weighted elliptic system with the advection term:$ p\geqslant\theta>1$, Nonlinear Differ. Equ. Appl., 2018, 25, 1–30. doi: 10.1007/s00030-017-0493-3
CrossRef $ p\geqslant\theta>1$" target="_blank">Google Scholar |
[18] | F. Mtiri and D. Ye, Liouville theorems for stable at infinity solutions of Lane-Emden system, Nonlinearity, 2019, 32, 910–926. doi: 10.1088/1361-6544/aaf078 |
[19] | E. Mitidieri, A Rellich type identity and applications, Commun. PDE., 1993, 18, 125–151. doi: 10.1080/03605309308820923 |
[20] | J. Serrin and H. Zou, Existence of positive solutions of Lane-Emden system, Atti. Semin. Mat. Fis. Univ. Modena, 1998, 46, 369–380. |
[21] | P. Souplet, The proof of the lane-emden conjecture in four space dimensions, Adv. Math., 2009, 221, 31409–1427. |
[22] | J. Wei and D. Ye, Liouville theorems for stable solutions of biharmonic problem, Math. Ann., 2013, 356, 1599–612. doi: 10.1007/s00208-012-0894-x |