2022 Volume 12 Issue 6
Article Contents

Huimiao Dong, Tiansi Zhang, Xingbo Liu. BIFURCATIONS OF DOUBLE HETERODIMENSIONAL CYCLES WITH THREE SADDLE POINTS[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2143-2162. doi: 10.11948/20210082
Citation: Huimiao Dong, Tiansi Zhang, Xingbo Liu. BIFURCATIONS OF DOUBLE HETERODIMENSIONAL CYCLES WITH THREE SADDLE POINTS[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2143-2162. doi: 10.11948/20210082

BIFURCATIONS OF DOUBLE HETERODIMENSIONAL CYCLES WITH THREE SADDLE POINTS

  • In this paper, bifurcations of double heterodimensional cycles of an "$\infty$" shape consisting of two saddles of (1,2) type and one saddle of (2,1) type are studied in three dimensional vector field. We discuss the gaps between returning points in transverse sections by establishing a local active coordinate system in the tubular neighborhood of unperturbed double heterodimensional cycles, through which the preservation of "$\infty$"-shape double heterodimensional cycles is proved. We then get the existence of a new heteroclinic cycle consisting of two saddles of (1,2) type and one saddle of (2,1) type, which is composed of one big orbit linking $p_1$, $p_3$ and two orbits linking $p_3$, $p_2$ and $p_2$, $p_1$ respectively, and another heterodimensional cycle consisting of one saddle $p_1$ of (2,1) type and one saddle $p_2$ of (1,2) type, which is composed of one orbit starting from $p_1$ to $p_2$ and another orbit starting from $p_2$ to $p_1$. Moreover, the 1-fold and 2-fold large 1-heteroclinic cycle consisting of two saddles $p_1$ and $p_3$ of (1,2) type is also presented. As well as the coexistence of a 1-fold large 1-heteroclinic cycle and the "$\infty$"-shape double heterodimensional cycles and the coexistence conditions are also given in the parameter space.

    MSC: 34C23, 34C27, 34C29
  • 加载中
  • [1] P. Aguirre, B. Krauskopf and H. M. Osinga, Global invariant manifolds near a Shilnikov homoclinic bifurcation, J. Comput. Dyn., 2014, 1(1), 1–38. doi: 10.3934/jcd.2014.1.1

    CrossRef Google Scholar

    [2] C. Bonatti and J. D. Lorenzo, Robust heterodimensional cycles and $C^1$-generic dynamics, J. Inst. Math. Jussieu, 2008, 7(3), 469–525.

    $C^1$-generic dynamics" target="_blank">Google Scholar

    [3] S. N. Chow, B. Deng and B. Fiedler, Homoclinic bifurcation at resonant eigenvalues, J. Dyn. Differ. Equ., 1990, 2(2), 177–244. doi: 10.1007/BF01057418

    CrossRef Google Scholar

    [4] Z. Du and W. Zhang, Melnikov method for homoclinic bifurcation in nonlinear impact oscillators, Comput. Math. Appl., 2005, 50(3–4), 445–458. doi: 10.1016/j.camwa.2005.03.007

    CrossRef Google Scholar

    [5] L. J. Díaz, Persistence of cycles and nonhyperbolic dynamics at heteroclinic bifurcations, Nonlinearity, 1995, 8(5), 693–713. doi: 10.1088/0951-7715/8/5/003

    CrossRef Google Scholar

    [6] F. Geng, Bifurcations of heterodimensional cycles and heteroclinic loop and BVPS of dynamic equations on time scales, East China Normal University, China, 2007.

    Google Scholar

    [7] F. Geng and J. Zhao, Bifurcations of orbit and inclination flips heteroclinic loop with nonhyperbolic equilibria, Sci. World J. 2014. DOI: 10.1155/2014/585609.

    CrossRef Google Scholar

    [8] F. Geng, D. Liu and D. Zhu, Bifurcations of generic heteroclinic loop accompanied by transcritical bifurcation, Int. J. Bifurcat. Chaos, 2008, 18(4), 1069–1083. doi: 10.1142/S0218127408020847

    CrossRef Google Scholar

    [9] F. Geng, X. Lin and X. Liu, Chaotic traveling wave solutions in coupled chua's circuits, J. Dyn. Differ. Equ., 2019, 31, 1373–1396. doi: 10.1007/s10884-017-9631-1

    CrossRef Google Scholar

    [10] M. Han, D. Luo, X. Wang and D. Zhu, Bifurcation theory and methods of dynamical systems, World Science, Singapore, 1997.

    Google Scholar

    [11] M. Han and H. Zhu, The loop quantities and bifurcations of homoclinic loops, J. Dyn. Differ. Equ., 2007, 234(2), 339–359. doi: 10.1016/j.jde.2006.11.009

    CrossRef Google Scholar

    [12] A. J. Homburg and B. Sandstede, Homoclinic and Heteroclinic Bifurcations in Vector ${\bf R}^3$ Fields, Handbook of dynamical systems, 2010(3), 379–524.

    ${\bf R}^3$ Fields" target="_blank">Google Scholar

    [13] A. J. Homburg and B. Krauskopf, Resonant homoclinic flip bifurcation, J. Dyn. Differ. Equ., 2000, 12(4), 807–850. doi: 10.1023/A:1009046621861

    CrossRef Google Scholar

    [14] G. John and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer Science and Business Media, New York, 2013.

    Google Scholar

    [15] Y. Jin and D. Zhu, Bifurcations of rough heteroclinic loops with three saddle points, Acta. Math. Sin., 2002, 18(1), 199–208. doi: 10.1007/s101140100139

    CrossRef Google Scholar

    [16] Y. Jin, X. Zhu, Z. Guo, H. Xu, L. Zhang and B. Ding, Bifurcations of nontwisted heteroclinic loop with resonant eigenvalues, Sci. World J., 2014. DOI: 10.1155/2014/716082.

    CrossRef Google Scholar

    [17] Y. Jin, S. Yang, Y. Liu, D. Xie and N. Zhang, Bifurcations of heteroclinic loop with twisted conditions, Int. J. Bifurcat. Chaos, 2017, 27(08), 1750120. doi: 10.1142/S0218127417501206

    CrossRef Google Scholar

    [18] Y. Jin, X. Zhu, Y. Liu, H. Xu and N. Zhang, Bifurcations of twisted heteroclinic loop with resonant eigenvalues, Nonlinear Dynam., 2018, 92(2), 557–573. doi: 10.1007/s11071-018-4075-7

    CrossRef Google Scholar

    [19] Y. Jin, H. Xu, Y. Gao, X. Zhao and D. Xie, Bifurcations of resonant double homoclinic loops for higher dimensional systems, J. Math. Comput. Sci., 2016, 16(1), 165–177.

    Google Scholar

    [20] G. Kovacic and S. Wiggins, Orbits homoclinic to resonance with an application to chaos in a model of the forced and damped sine-Gordon equation, Physica D., 1992, 57(1–2), 185–225. doi: 10.1016/0167-2789(92)90092-2

    CrossRef Google Scholar

    [21] J. S. W. Lamb, M. A. Teixeira and N. W. Kevin, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in $R^3$, J. Differ. Equation, 2005, 219(1), 78–115. doi: 10.1016/j.jde.2005.02.019

    CrossRef $R^3$" target="_blank">Google Scholar

    [22] Z. Liu, K. Zhang and M. Li, Exact traveling wave solutions and bifurcation of a generalized (3+1)-dimensional Time-Fractional Camassa-Holm-Kadomtsev-Petviashvili equation, J. Funct. Spaces, 2020. DOI: 10.1155/2020/4532824.

    CrossRef Google Scholar

    [23] D. Liu, M. Han and W. Zhang, Bifurcations of $2-2-1$ heterodimensional cycles under transversality condition, Int. J. Bifurcat. Chaos, 2012, 22(08), 1250191. doi: 10.1142/S021812741250191X

    CrossRef $2-2-1$ heterodimensional cycles under transversality condition" target="_blank">Google Scholar

    [24] D. Liu, S. Ruan and D. Zhu, Nongeneric bifurcations near heterodimensional cycles with inclination flip in $R^4$, Discret. Con. Dyn-S., 2011, 4(6), 1511–1532.

    $R^4$" target="_blank">Google Scholar

    [25] X. Liu, Z. Wang and D. Zhu, Bifurcation of rough heteroclinic loop with orbit flips, Int. J. Bifurcat. Chaos, 2012, 22(11), 1250278. doi: 10.1142/S0218127412502781

    CrossRef Google Scholar

    [26] X. Liu, X. Wang and T. Wang, Nongeneric bifurcations near a nontransversal heterodimensional cycle, Chinese. Ann. Math. B, 2018, 39, 111–128. doi: 10.1007/s11401-018-1055-7

    CrossRef Google Scholar

    [27] Q. Lu, Z. Qiao, T. Zhang and D. Zhu, Heterodimensional cycle bifurcation with orbit-flip, Int. J. Bifurcat. Chaos, 2010, 20(2), 491–508. doi: 10.1142/S0218127410025569

    CrossRef Google Scholar

    [28] Q. Lu, D. Zhu and F. Geng, Weak type heterodimensional cycle bifurcation with orbit-flip, Sci. China. Math., 2011, 54(6), 1175–1196. doi: 10.1007/s11425-011-4167-z

    CrossRef Google Scholar

    [29] K. Manna and M. Banerjee, Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay, Math. Biosct. Eng., 2019, 16(4), 2411–2446. doi: 10.3934/mbe.2019121

    CrossRef Google Scholar

    [30] S. Newhouse and J. Palis, Bifurcations of Morse-Smale dynamical systems, Dynamical systems, Academic, 1973, 303–366.

    Google Scholar

    [31] E. Pérez-Chavela, M. Santoprete and C. Tamayo, Bifurcation of relative equilibria for vortices and general homogeneous potentials, Qual. Theor. Dyn. Syst., 2020, 19(1), 1–19. doi: 10.1007/s12346-019-00337-5

    CrossRef Google Scholar

    [32] J. D. M. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Differ. Equation, 2005, 218(2), 390–443. doi: 10.1016/j.jde.2005.03.016

    CrossRef Google Scholar

    [33] P. D. P. Salazar, Y. Ilyasov, L. F. C. Alberto, E. C. M. Costa and M. B. Salles, Saddle-Node bifurcations of power systems in the context of variational theory and nonsmooth optimization, IEEE Access, 2020, 8, 110986–110993. doi: 10.1109/ACCESS.2020.3002840

    CrossRef Google Scholar

    [34] D. Shang and M. Han, Global-bifurcation of a perturbed double-homoclinic loop, Chinese Ann. Math. B, 2006, 27(4), 425–436. doi: 10.1007/s11401-004-0487-4

    CrossRef Google Scholar

    [35] L. P. Shilnikov, Methods of Qualitative Theory in Nonlinear Dynamics, World Scientific, New Jersey, 1998.

    Google Scholar

    [36] S. Tomizawa, Hopf-homoclinic Bifurcations and Heterodimensional Cycles, Tokyo J. Math., 2009, 42(2), 449–469.

    Google Scholar

    [37] C. K. Tse, D. Dai and X. Ma, Symbolic analysis of bifurcation in switching power converters: a practical alternative viewpoint of border collision, Int. J. Bifurcat. Chaos, 2005, 15(07), 2263–2270. doi: 10.1142/S0218127405013253

    CrossRef Google Scholar

    [38] M. Wechselberger, Existence and bifurcation of canards in the case of a folded node, SIAM J. Appl. Dyn. Syst., 2005, 4(1), 101–139.

    Google Scholar

    [39] Z. Wang and X. Liu, Bifurcations and exact traveling wave solutions for the KdV-like equation, . Nonlinear Dyn., 2019, 95(1), 465–477. doi: 10.1007/s11071-018-4576-4

    CrossRef Google Scholar

    [40] T. Xu, S. Ji, M. Mei and J. Yin, Sharp oscillatory traveling waves of structured population dynamics model with degenerate diffusion, J. Differ. Equation, 2020, 269(10), 8882–8917. doi: 10.1016/j.jde.2020.06.029

    CrossRef Google Scholar

    [41] Y. Xu and D. Zhu, Bifurcations of heterodimensional cycles with one orbit flip and one inclination flip, Nonlinear Dyn., 2010, 60(1), 1–13.

    Google Scholar

    [42] T. Zhang and D. Zhu, Homoclinic bifurcation of orbit flip with resonant principal eigenvalues, Acta Math. Sin., 2006, 22(3), 855–864. doi: 10.1007/s10114-005-0581-x

    CrossRef Google Scholar

    [43] T. Zhang and D. Zhu, Bifurcations of homoclinic orbit connecting two nonleading eigendirections, Int. J. Bifurcat. Chaos, 2007, 17(3), 823–836.

    Google Scholar

    [44] W. Zhang, Bifurcation of double homoclinic loops in four dimensional systems and problems of periodic solutions in population dynamics, East China Normal University, China, 2007.

    Google Scholar

    [45] X. Zhang, Homoclinic, heteroclinic and periodic orbits of singularly perturbed systems, Sci. China. Math., 2019, 62(9), 1687–1704.

    Google Scholar

    [46] D. Zhu, Problems in homoclinic bifurcation with higher dimensions, Acta Math. Sin., 1998, 14(3), 341–352. doi: 10.1007/BF02580437

    CrossRef Google Scholar

    [47] D. Zhu and Z. Xia, Bifurcations of heteroclinic loops, Sci. China. Math., 1998, 41(8), 837–848. doi: 10.1007/BF02871667

    CrossRef Google Scholar

    [48] A. Zilburg and P. Rosenau, Multi-dimensional compactons and compact vortices, J. Phys. A-Math Theor., 2018, 51(39), 395201. doi: 10.1088/1751-8121/aad874

    CrossRef Google Scholar

Figures(4)

Article Metrics

Article views(2547) PDF downloads(431) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint