Citation: | Chuanxi Zhu, Yingying Xiao, Jianhua Chen, Li Xie. STANDING WAVE SOLUTIONS FOR THE GENERALIZED MODIFIED CHERN-SIMONS-SCHRÖDINGER SYSTEM[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2163-2183. doi: 10.11948/20210194 |
In this paper, we study the modified gauged Schrödinger equation under some assumptions on the functions V and f. By using dual approach, Jeanjean's monotone trick and Mountain Pass Theorem, we obtain the standing wave solutions for the generalized modified Chern-Simons-Schrödinger system.
[1] | L. Bergé, A. Bouard and J. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 1995, 8, 235–253. doi: 10.1088/0951-7715/8/2/007 |
[2] | F. Bass and N. Nasanov, Nonlinear electromagnetic-spin waves, Phys. Rep., 1990, 189, 165–223. doi: 10.1016/0370-1573(90)90093-H |
[3] | J. Byeon, H. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 2012, 263(6), 1575–1608. doi: 10.1016/j.jfa.2012.05.024 |
[4] |
J. Byeon, H. Huh and J. Seok, On standing waves with a vortex point of order $ N$ for the nonlinear Chern-Simons-Schrödinger equations, J. Differential Equations, 2016, 261(2), 1285–1316. doi: 10.1016/j.jde.2016.04.004
CrossRef $ N$ for the nonlinear Chern-Simons-Schrödinger equations" target="_blank">Google Scholar |
[5] | S. Chen and Z. Gao, An improved result on ground state solutions of quasilinear Schrödinger equations with super-linear nonlinearities, Bull. Aust. Math. Soc., 2019, 99(2), 231–241. doi: 10.1017/S0004972718001235 |
[6] | J. Chen, X. Tang and B. Cheng, Existence of ground states solutions for quasilinear Schrödinger equations with super-quadratic condition, Appl. Math. Lett., 2018, 79, 27–33. doi: 10.1016/j.aml.2017.11.007 |
[7] | J. Chen, X. Tang and B. Cheng, Positive solutions for a class of quasilinear Schrödinger equations with superlinear condition, Appl. Math. Lett., 2019, 87, 165–171. doi: 10.1016/j.aml.2018.07.035 |
[8] |
S. Chen, B. Zhang and X. Tang, Existence and concentration of semiclassical ground state solutions for the generalized Chern-Simons-Schrödinger system in $ H^1(\mathbb{R}^2)$, Nonlinear Anal., 2019, 185, 68–96. doi: 10.1016/j.na.2019.02.028
CrossRef $ H^1(\mathbb{R}^2)$" target="_blank">Google Scholar |
[9] | M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear. Anal., 2004, 56(2), 213–226. doi: 10.1016/j.na.2003.09.008 |
[10] | P. Cunha, P. d'Avenia, A. Pomponio and G. Siciliano, A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, NoDEA Nonlinear Differential Equations Appl., 2015, 22(6), 1831–1850. doi: 10.1007/s00030-015-0346-x |
[11] | P. d'Avenia, A. Pomponio and T. Watanabe, Standing waves of modified Schrödinger equations coupled with the Chern-Simons gauge theory, Proc. Roy. Soc. Edinburgh. Sect. A, 2020, 150(4), 1915–1936. doi: 10.1017/prm.2019.9 |
[12] | Y. Deng, S. Peng and W. Shuai, Nodal standing waves for a gauged nonlinear Schrödinger equation in $ \mathbb{R}^2$, J. Differential Equations, 2018, 264(6), 4006–4035. doi: 10.1016/j.jde.2017.12.003 |
[13] | X. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Differential Equations, 2013, 254(4), 2015–2032. doi: 10.1016/j.jde.2012.11.017 |
[14] | J. Han, H. Huh and J. Seok, Chern-Simons limit of standing wave solutions for the Schrödinger equations coupled with a neutral scalar field, J. Funct. Anal., 2014, 266(1), 318–342. doi: 10.1016/j.jfa.2013.09.019 |
[15] | H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 2012, 53(6), 1–8. |
[16] | R. Jackiw and S. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 1990, 42(10), 3500–3513. doi: 10.1103/PhysRevD.42.3500 |
[17] | R. Jackiw and S. Pi, Self-dual Chern-Simons solitons, Progr. Theoret. Phys. Suppl., 1992, 107, 1–40. doi: 10.1143/PTPS.107.1 |
[18] | R. Jackiw and S. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 1990, 64(25), 2969–2972. doi: 10.1103/PhysRevLett.64.2969 |
[19] | L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $ \mathbb{R}^N$, Proc. Roy. Soc. Edinburgh Sect. A, 1999, 129(4), 789–809. |
[20] | C. Ji and F. Fang, Standing waves for the Chern-Simons Schrödinger equation with critical exponential growth, J. Math. Anal. Appl., 2017, 450(1), 578–591. doi: 10.1016/j.jmaa.2017.01.065 |
[21] | S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 1981, 50, 3262–3267. doi: 10.1143/JPSJ.50.3262 |
[22] | G. Li, Y. Li and C. Tang, Existence and concentrate behavior of positive solutions for Chern-Simons Schrödinger systems with critical growth, Complex Var. Elliptic Equ., 2021, 66(3), 476–486. doi: 10.1080/17476933.2020.1723564 |
[23] | G. Li, X. Luo and W. Shuai, Sign-changing solutions to a gauged nonlinear Schrödinger equation, J. Math. Anal. Appl., 2017, 455(2), 1559–1578. doi: 10.1016/j.jmaa.2017.06.048 |
[24] | Z. Liu, Z. Ouyang and J. Zhang, Existence and multiplicity of sign-changing standing waves for a gauged nonlinear Schrödinger equation in $ \mathbb{R}^2$, Nonlinearity, 2019, 32(8), 3082–3111. doi: 10.1088/1361-6544/ab1bc4 |
[25] | B. Liu and P. Smith, Global wellposedness of the equivariant Chern-Simons Schrödinger equation, Rev. Mat. Iberoam., 2016, 32(3), 751–794. doi: 10.4171/RMI/898 |
[26] | B. Liu, P. Smith and D. Tataru, Local wellposedness of Chern-Simons Schrödinger, Int. Math. Res. Not. IMRN, 2014, 23, 6341–6398. |
[27] | J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations, II, J. Differential Equations, 2003, 187(2), 473–493. doi: 10.1016/S0022-0396(02)00064-5 |
[28] | X. Luo, Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation, Z. Angew. Math. Phys., 2018, 69(3), 1–17. |
[29] | V. Makhankov and V. Fedyanin, Nonlinear effects in quasi-one-dimensional models and condensed matter theory, Phys. Rep., 1984, 104(1), 1–86. doi: 10.1016/0370-1573(84)90106-6 |
[30] | S. Oh and F. Pusateri, Decay and scattering for the Chern-Simons Schrödinger equations, Int. Math. Res. Not. IMRN, 2015, 24, 13122–13147. |
[31] | A. Pankov, Homoclinics for strongly indefinite almost periodic second order Hamiltonian systems, Adv. Nonlinear Anal., 2019, 8(1), 372–385. |
[32] | N. S. Papageorgiou, V. D. R$\check{a}$dulescu and D. D. Repov$\check{s}$, Nonlinear analysis-theory and methods, Springer Monographs in Mathematics, Springer, charm, 2019. |
[33] | A. Pomponio, Some results on the Chern-Simons-Schrödinger equation, Recent advances in nonlinear PDEs theory, 67–93, Lect. Notes Semin. Interdiscip. Mat., 13, Semin. Interdiscip. Mat. (S. I. M.), Potenza, 2016. |
[34] | A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 2015, 53(1–2), 289–316. doi: 10.1007/s00526-014-0749-2 |
[35] | D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 2006, 237(2), 655–674. doi: 10.1016/j.jfa.2006.04.005 |
[36] | D. Ruiz and G. Siciliano, Existence of ground states for a modified nonlinear Schrödinger equation, Nonlinearity, 2010, 23(5), 1221–1233. doi: 10.1088/0951-7715/23/5/011 |
[37] | P. Rabinowitz, Mimimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math. Amer. Math. Soc., Providence, RI, 1986, 65. |
[38] | J. Seok, Infinitely many standing waves for the nonlinear Chern-Simons Schrödinger equations, Adv. Math. Phys., 2015, 7pp. |
[39] | L. Shen, Ground state solutions for a class of gauged Schrödinger equations with subcritical and critical exponential growth, Math. Methods Appl. Sci., 2020, 43(2), 536–551. doi: 10.1002/mma.5905 |
[40] | X. Tang, Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity, J. Math. Anal. Appl., 2013, 401(1), 407–415. doi: 10.1016/j.jmaa.2012.12.035 |
[41] | X. Tang, J. Zhang and W. Zhang, Existence and concentration of solutions for the Chern-Simons-Schrödinger system with general nonlinearity, Results Math., 2017, 71(3–4), 643–655. doi: 10.1007/s00025-016-0553-8 |
[42] | Y. Wan and J. Tan, Standing waves for the Chern-Simons-Schrödinger systems without $(AR)$ condition, J. Math. Anal. Appl., 2014, 415(1), 422–434. doi: 10.1016/j.jmaa.2014.01.084 |
[43] | M. Willen, Minimax Theorems, Birkhauser, Berlin, 1996. |
[44] | X. Wu, Multiple solutions for quasilinear Schrödinger equations with a parameter, J. Differential Equations, 256, 2014, 2619–2632. doi: 10.1016/j.jde.2014.01.026 |
[45] | K. Wu and X. Wu, Radial solutions for quasilinear Schrödinger equations without 4-superlinear condition, Appl. Math. Lett., 2018, 76, 53–59. doi: 10.1016/j.aml.2017.07.007 |
[46] | Y. Xiao, C. Zhu and J. Chen, Ground state solutions for modified quasilinear Schrödinger equations coupled with the Chern-Simons gauge theory, Appl. Anal., 2020, 1–11. DOI: 10.1080/00036811.2020.1836355. |
[47] | W. Xie and C. Chen, Sign-changing solutions for the nonlinear Chern-Simons-Schrödinger equations, Appl. Anal., 2020, 99(5), 880–898. doi: 10.1080/00036811.2018.1514020 |
[48] | J. Zhang, X. Lin and X. Tang, Ground state solutions for a quasilinear Schrödinger equation, Mediterr. J. Math., 2017, 14(2), 1–13. |
[49] | W. Zhang, H. Mi and F. Liao, Concentration behavior and multiplicity of solutions to a gauged nonlinear Schrödinger equation, Appl. Math. Lett., 2020, 107, 1–8. |
[50] | J. Zhang, X. Tang and W. Zhang, Existence of infinitely many solutions for a quasilinear elliptic equation, Appl. Math. Lett., 2014, 37, 131–135. doi: 10.1016/j.aml.2014.06.010 |
[51] | J. Zhang, X. Tang and W. Zhang, Infintiely many solutions of quasilinear with sign-changing potential, J. Math. Anal. Appl., 2014, 420(2), 1762–1775. doi: 10.1016/j.jmaa.2014.06.055 |
[52] | J. Zhang, W. Zhang and X. Xie, Infinitely many solutions for a gauged nonlinear Schrödinger equation, Appl. Math. Lett., 2019, 88, 21–27. doi: 10.1016/j.aml.2018.08.007 |