2022 Volume 12 Issue 4
Article Contents

Chun Lu, Xiaohua Ding, Lei Zhang. STATIONARY DISTRIBUTION AND PERMANENCE OF A STOCHASTIC DELAY PREDATOR-PREY LOTKA-VOLTERRA MODEL WITH LÉVY JUMPS[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1328-1352. doi: 10.11948/20210077
Citation: Chun Lu, Xiaohua Ding, Lei Zhang. STATIONARY DISTRIBUTION AND PERMANENCE OF A STOCHASTIC DELAY PREDATOR-PREY LOTKA-VOLTERRA MODEL WITH LÉVY JUMPS[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1328-1352. doi: 10.11948/20210077

STATIONARY DISTRIBUTION AND PERMANENCE OF A STOCHASTIC DELAY PREDATOR-PREY LOTKA-VOLTERRA MODEL WITH LÉVY JUMPS

  • In this paper, we propose and investigate an impulsive stochastic predator-prey Lotka-Volterra model with infinite delay and Lévy jumps. Sufficient criteria for permanence in time average and the threshold between stability in time average and extinction are provided. For the corresponding case without impulse, the easily substantiated sufficient criteria for stability in distribution are derived. Our results demonstrate that, first of all, the coefficients related to infinite delay have some effects on permanence in time average and stability in distribution; then impulsive perturbations play a prominent part in keeping the permanence in time average despite the unfavourable factor Lévy jumps causes.

    MSC: 60H10, 34F05
  • 加载中
  • [1] I. Barǎalat, Systems d'equations differential d'oscillations nonlineairies, Rev. Roumaine Math. Pures Appl., 1959, 4, 267-270.

    Google Scholar

    [2] J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 2011, 74, 6601-6616. doi: 10.1016/j.na.2011.06.043

    CrossRef Google Scholar

    [3] O. Butkovsky and M. Scheutzow, Invariant measures for stochastic functional differential equations, Electron. J. Probab., 2017, 22, 1-23.

    Google Scholar

    [4] J. Bao, G. Yin and C. Yuan, Stationary distributions for retarded stochastic differential equations without dissipativity, Stochastics, 2017, 89, 530-549. doi: 10.1080/17442508.2016.1267180

    CrossRef Google Scholar

    [5] Z. Chang, X. Xing, S. Liu and X. Meng, Spatiotemporal dynamics for an impulsive eco-epidemiological system driven by canine distemper virus, Appl. Math. Comput., 2021, 402, 126135.

    Google Scholar

    [6] N. H. Du, N. H. Dang and N. T. Dieu, On stability in distribution of stochastic differential delay equations with markovian switching, Syst. Control Lett., 2014, 65, 43-49.

    Google Scholar

    [7] K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Kluwer Academic, 1992.

    Google Scholar

    [8] R. Has'minskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1980.

    Google Scholar

    [9] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic diffrential equations, SIAM Rev., 2001, 43, 525-546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [10] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, 1993.

    Google Scholar

    [11] Y. Kuang and H. L. Smith, Global stability for infinite delay Lotka-Volterra type systems, J. Differential Equations., 2003, 103, 221-246.

    Google Scholar

    [12] X. Li, G. Song, Y. Xia and C. Yuan, Dynamical behaviors of the tumor-immune system in a stochastic environment, SIAM J. Appl. Math., 2019, 79, 2193-2217. doi: 10.1137/19M1243580

    CrossRef Google Scholar

    [13] Q. Liu and Q. Chen, Analysis of a general stochastic non-autonomous logistic model with delays and Lévy jumps, J. Math. Anal. Appl., 2016, 433, 95-120. doi: 10.1016/j.jmaa.2015.07.030

    CrossRef Google Scholar

    [14] X. Li, R. Wang and G. Yin, Moment bounds and ergodicity of switching diffusion systems involving two-time-scale Markov chains, Syst. Control Lett., 2019, 132, Article ID: 104514. doi: 10.1016/j.sysconle.2019.104514

    CrossRef Google Scholar

    [15] M. Liu and K. Wang, On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl., 2012, 63, 871-886. doi: 10.1016/j.camwa.2011.11.003

    CrossRef Google Scholar

    [16] Q. Liu and D. Jiang, Stationary distribution and extinction of a stochastic predator-prey model with distributed delay, Appl. Math, Lett., 2018, 78, 79-87. doi: 10.1016/j.aml.2017.11.008

    CrossRef Google Scholar

    [17] Q. Liu, D. Jiang, T. Hayat and A. Alsaedi, Stationary distribution and extinction of a stochastic HIV-1 infection model with distributed delay and logistic Growth, J. Nonlinear Sci., 2020, 30, 369-395. doi: 10.1007/s00332-019-09576-x

    CrossRef Google Scholar

    [18] M. Liu, C. Bai and Y. Jin, Population dynamical behavior of a two-predator one-prey stochastic model with time delay, Discrete Contin. Dyn. Syst., 2017, 37, 2513-2538. doi: 10.3934/dcds.2017108

    CrossRef Google Scholar

    [19] M. Liu and M. Fan, Stability in distribution of a three-species stochastic casade predator-prey system with time delays, IMA J. Appl. Math., 2017, 82, 396-423.

    Google Scholar

    [20] C. Lu, Dynamics of a stochastic Markovian switching predator-prey model with infinite memory and general Lévy jumps, Math. Comput. Simulat., 2021, 181, 316-332. doi: 10.1016/j.matcom.2020.10.002

    CrossRef Google Scholar

    [21] M. Liu and K. Wang, Stochastic Lotka-Volterra systems with Lévy noise, J. Math. Anal. Appl., 2014, 410, 750-763. doi: 10.1016/j.jmaa.2013.07.078

    CrossRef Google Scholar

    [22] Q. Liu, D. Jiang, N. Shi, T. Hayat and A. Alsaedi, Stochastic mutualism model with Lévy jumps, Commun. Nonlinear Sci. Numer. Simul., 2017, 43, 78-90. doi: 10.1016/j.cnsns.2016.05.003

    CrossRef Google Scholar

    [23] C. Lu, Dynamical Behavior of Stochastic Markov Switching Hepatitis B Epidemic Model with Saturated Incidence Rate, J. Funct. Space., 2022, Article ID: 5574983.

    Google Scholar

    [24] C. Lu, Dynamical analysis and numerical simulations on a crowley-Martin predator-prey model in stochastic environment, Appl. Math. Comput., 2022, 413, 126641.

    Google Scholar

    [25] X. Li and G. Yin, Logistic models with regime switching: Permanence and ergodicity, J. Math. Anal. Appl., 2016, 433, 593-611.

    Google Scholar

    [26] M. Liu and C. Bai, Optimal harvesting of a stochastic mutualism model with regime-switching, Appl. Math. Comput., 2020, 37315, Article ID: 125040.

    Google Scholar

    [27] X. Li and G. Yin, Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 2011, 376, 11-28. doi: 10.1016/j.jmaa.2010.10.053

    CrossRef Google Scholar

    [28] L. Liu, X. Meng and T. Zhang, Optimal control strategy for an impulsive stochastic competition system with time delays and jumps, Physica A, 2017, 477, 99-113. doi: 10.1016/j.physa.2017.02.046

    CrossRef Google Scholar

    [29] G. Lan, S. Yuan and B. Song, The impact of hospital resources and environmental perturbations to the dynamics of SIRS model, J. Frankl. Inst., 2021, 358, 2405-2433. doi: 10.1016/j.jfranklin.2021.01.015

    CrossRef Google Scholar

    [30] X. Lv, X. Meng and X. Wang, Extinction and stationary distribution of an impulsive stochastic chemostat model with nonlinear perturbation, Chaos Solitons Fractals, 2018, 110, 273-279. doi: 10.1016/j.chaos.2018.03.038

    CrossRef Google Scholar

    [31] C. Lu and X. Ding, Periodic solutions and stationary distribution for a stochastic predator-prey system with impulsive perturbations, Appl. Math. Comput., 2019, 350, 313-322.

    Google Scholar

    [32] C. Lu, G. Sun and Y. Zhang, Stationary distribution and extinction of a multi-stage HIV model with nonlinear stochastic perturbation, J. Appl. Math. Comput., DOI: 10.1007/s12190-021-01530-z.

    Google Scholar

    [33] X. Mao, Stochastic Differential Equations and their Applications, Horwood, Chichester, 1997.

    Google Scholar

    [34] X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006.

    Google Scholar

    [35] N. Macdonald, Time Lags in Biological Models. in: Lecture Notes in Biomathematics, Springer-Verlag, 1978.

    Google Scholar

    [36] W. Mao, L. Hu and X. Mao, Neutral stochastic functional differential equations with Lévy jumps under the local Lipschitz condition, Adv. Differ. Equ., 2017, 57, 1-24.

    Google Scholar

    [37] H. Qiu, M. Liu, K. Wang and Y. Wang, Dynamics of a stochastic predator-prey system with Beddington-DeAngelis functional response, Appl. Math. Comput., 2012, 219, 2303-2312.

    Google Scholar

    [38] H. Qiu and W. Deng, Optimal harvesting of a stochastic delay competitive Lotka-Volterra model with Lévy jumps, Appl. Math. Comput., 2018, 317, 210-222.

    Google Scholar

    [39] R. Rudnicki and K. Pichór, Influence of stochastic perturbation on prey-predator systems, Math Biosci., 2007, 206, 108-119. doi: 10.1016/j.mbs.2006.03.006

    CrossRef Google Scholar

    [40] F. Wei and C. Wang, Survival analysis of a single-species population model with fluctuations and migrations between patches, Appl. Math. Modelling, 2020, 81, 113-127. doi: 10.1016/j.apm.2019.12.023

    CrossRef Google Scholar

    [41] F. Wu and Y. Xu, Stochastic Lotka-Volterra population dynamics with infinite delay, SIAM J. Appl. Math., 2009, 70, 641-657. doi: 10.1137/080719194

    CrossRef Google Scholar

    [42] Z. Wang and M. Liu, Optimal impulsive harvesting strategy of a stochastic Gompertz model in periodic environments, Appl. Math. Lett., 2022, 125, 107733. doi: 10.1016/j.aml.2021.107733

    CrossRef Google Scholar

    [43] Z. Wang, M. Deng and M. Liu, Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching, Chaos Solitons Fractals, 2021, 142, 110462. doi: 10.1016/j.chaos.2020.110462

    CrossRef Google Scholar

    [44] Y. Wang, F. Wu and X. Mao, Stability in distribution of stochastic functional differential equations, Syst. Control Lett., 2019, 132, 104513. doi: 10.1016/j.sysconle.2019.104513

    CrossRef Google Scholar

    [45] Y. Xu, F. Wu and Y. Tan, Stochastic Lotka-Volterra system with infinite delay, J. Comput. Appl. Math., 2009, 232, 472-480. doi: 10.1016/j.cam.2009.06.023

    CrossRef Google Scholar

    [46] C. Yuan, J. Zou and X. Mao, Stability in distribution of stochastic differential delay equations with markovian switching, Syst. Control Lett., 2003, 50, 195-207. doi: 10.1016/S0167-6911(03)00154-3

    CrossRef Google Scholar

    [47] C. Zhu and G. Yin, On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Anal., 2009, 71, e1370-e1379. doi: 10.1016/j.na.2009.01.166

    CrossRef Google Scholar

    [48] W. Zuo, D. Jiang, X. Sun, T. Hayat and A. Alsaedi, Long-time behaviors of a stochastic cooperative Lotka-Volterra system with distributed delay, Physica A, 2018, 15, 542-559.

    Google Scholar

    [49] S. Zhang, S. Yuan and T. Zhang, A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments, Appl. Math. Comput., 2022, 413, 126598.

    Google Scholar

    [50] X. Zhang and Q. Yang, Dynamical Behavior of a stochastic Predator-Prey model with general functional response and nonlinear jump-diffusion, Discrete Cont. Dyn-B, doi: 10.3934/dcdsb.2021177.

    Google Scholar

    [51] X. Zou, The protection and optimal harvesting problems for biological resource in random environment, China Doctor Dissertation Full-text Database, 2013.

    Google Scholar

    [52] W. Zuo and D. Jiang, Periodic solutions for a stochastic non-autonomous Holling-Tanner predator-prey system with impulses, Nonlinear Anal. Hybrid Syst., 2016, 22, 191-201. doi: 10.1016/j.nahs.2016.03.004

    CrossRef Google Scholar

    [53] W. Zuo and Y. Zhou, Density function and stationary distribution of a stochastic SIR model with distributed delay, Appl. Math. Lett., 2022, 129, 107931. doi: 10.1016/j.aml.2022.107931

    CrossRef Google Scholar

Figures(2)

Article Metrics

Article views(2889) PDF downloads(505) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint