2022 Volume 12 Issue 4
Article Contents

Qiulan Zhao, Yadong Zhong, Xinyue Li. EXPLICIT SOLUTIONS TO A HIERARCHY OF DISCRETE COUPLING KORTEWEG-DE VRIES EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1353-1370. doi: 10.11948/20210081
Citation: Qiulan Zhao, Yadong Zhong, Xinyue Li. EXPLICIT SOLUTIONS TO A HIERARCHY OF DISCRETE COUPLING KORTEWEG-DE VRIES EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1353-1370. doi: 10.11948/20210081

EXPLICIT SOLUTIONS TO A HIERARCHY OF DISCRETE COUPLING KORTEWEG-DE VRIES EQUATIONS

  • Corresponding author: Email: qlzhao@sdust.edu.cn(Q. L. Zhao) 
  • Fund Project: The authors were supported by the National Nature Science Foundation of China (No. 11701334) and the "Jingying" Project of Shandong University of Science and Technology
  • To get a hierarchy of discrete coupling Korteweg-de Vries equations, we consider from a discrete four-by-four matrix spectral problem. Then we can get the Lax pair of the KdV equations. Finally we present the explicit solutions of the KdV equations by constructing theirs Darboux transformations with the help of the corresponding Lax pairs.

    MSC: 35Q53, 37K10
  • 加载中
  • [1] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.

    Google Scholar

    [2] E. Cerpa, E. Crepeau and C. Moreno, On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network, IMA J. Math. Control I., 2019, 1-15.

    Google Scholar

    [3] E. Fan and H. Zhang, New exact solutions to a system of coupled KdV equations, Phys. Lett. A, 1998, 245(5), 389-392. doi: 10.1016/S0375-9601(98)00464-2

    CrossRef Google Scholar

    [4] C. Gu, Soliton Theory and Its Application, Zhejiang Science and Technology Press, Zhejiang, 1990.

    Google Scholar

    [5] R. Hirota, Nonlinear Partial Difference Equations. I. A Difference Analogue of the Korteweg-de Vries Equation, J. Phys. Soc. Jap., 1977, 43(4), 1424-1433. doi: 10.1143/JPSJ.43.1424

    CrossRef Google Scholar

    [6] J. Ji and Z. Zhu, On a nonlocal modied Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions, Commun. Nonlinear Sci., 2017, 42, 699-708. doi: 10.1016/j.cnsns.2016.06.015

    CrossRef Google Scholar

    [7] D. J. Korteweg and de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag., 1895, 5(39), 422-443.

    Google Scholar

    [8] V. S. Kumar, H. Rezazadeh, M. Eslami, F. Izadi and M. S. Osman, Jacobi Elliptic Function Expansion Method for Solving KdV Equation with Conformable Derivative and Dual-Power Law Nonlinearity, Int. J. Appl. Comput. Math., 2019, 5, 127. doi: 10.1007/s40819-019-0710-3

    CrossRef Google Scholar

    [9] B. A. Kupershmidt, A super Korteweg-de Vries equation: An integrable system, Phys. Lett. A, 1984, 102(5-6), 213-215. doi: 10.1016/0375-9601(84)90693-5

    CrossRef Google Scholar

    [10] X. Li, Q. Zhao and Q. Yang, Integrable asymmetric AKNS model with multi-component, Commun. Nonlinear Sci. Numer. Simulat., 2020, 91, 105434. doi: 10.1016/j.cnsns.2020.105434

    CrossRef Google Scholar

    [11] L. Liu, X. Wen and D. Wang, A new lattice hierarchy: Hamiltonian structures, symplectic map and N-fold Darboux transformation, Appl. Math. Model., 2019, 67, 201-218. doi: 10.1016/j.apm.2018.10.030

    CrossRef Google Scholar

    [12] L. Liu, X. Wen and D. Wang, A new lattice hierarchy: Hamiltonian structures, symplectic map and N -fold Darboux transformation, Appl. Math. Model., 2019, 67, 201-218. doi: 10.1016/j.apm.2018.10.030

    CrossRef Google Scholar

    [13] W. Ma, A generating scheme for conservation laws of discrete zero curvature equations and its application, Comput. Math. Appl., 2019, 78, 3422-3428. doi: 10.1016/j.camwa.2019.05.012

    CrossRef Google Scholar

    [14] W. Ma, N-soliton solutions and the Hirota conditions in (1+1)-dimensions, Int. J. Nonlin. Sci. Num., 2021.

    Google Scholar

    [15] W. Ma, N-soliton solutions and the Hirota conditions in (2+1)-dimensions, Opt. Quant. Electron., 2020, 52(12).

    Google Scholar

    [16] W. Ma, A Darboux transformation for the Volterra lattice equation, Anal. Math. Phys., 2019, 9(4), 1711-1718. doi: 10.1007/s13324-018-0267-z

    CrossRef Google Scholar

    [17] W. Ma, N-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation, Math. Comput. Simulat., 2021, 190, 270-279. doi: 10.1016/j.matcom.2021.05.020

    CrossRef Google Scholar

    [18] W. Ma, N-soliton solution of a combined pKP-BKP equation, J. Geom. Phys., 2021, 165, 104191. doi: 10.1016/j.geomphys.2021.104191

    CrossRef Google Scholar

    [19] W. Ma, X. Yong and X. Lv, Soliton solutions to the B-type Kadomtsev–Petviashvili equation under general dispersion relations, Wave Motion, 2021, 103, 102719. doi: 10.1016/j.wavemoti.2021.102719

    CrossRef Google Scholar

    [20] V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991.

    Google Scholar

    [21] R. M. Miura, Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation, J. Math. Phys., 1968, 9(8), 1202-1204. doi: 10.1063/1.1664700

    CrossRef Google Scholar

    [22] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1993.

    Google Scholar

    [23] S. Shen, C. Li, Y. Jin and W. Ma, Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling, J. Math. Phys., 2018, 59, 103503. doi: 10.1063/1.4990534

    CrossRef Google Scholar

    [24] T. Tsuchida and M. Wadati, The Coupled Modified Korteweg-de Vries Equations, J. Phys. Soc. Jap., 1998, 67(4), 1175-1187. doi: 10.1143/JPSJ.67.1175

    CrossRef Google Scholar

    [25] H. D. Wahlquist and F. B. Estabrook, Bäcklund transformation for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett., 1973, 31(23), 1386-1390. doi: 10.1103/PhysRevLett.31.1386

    CrossRef Google Scholar

    [26] X. Wen and C. Yuan, Controllable rogue wave and mixed interaction solutions for the coupled Ablowitz-Ladik equations with branched dispersion, Appl. Math. Lett., 2022, 123, 107591. doi: 10.1016/j.aml.2021.107591

    CrossRef Google Scholar

    [27] M. Wang, Exact solutions for a compound KdV-Burgers equation, Phys. Lett. A, 1996, 213, 279-287. doi: 10.1016/0375-9601(96)00103-X

    CrossRef Google Scholar

    [28] J. Wu, A new combined soliton solution of the modified Korteweg-de Vries equation, Pramana J. Phys., 2020, 94, 123. doi: 10.1007/s12043-020-01958-1

    CrossRef Google Scholar

    [29] X. Xu, A hierarchy of Liouville integrable discrete Hamiltonian equations, Phys. Lett. A, 2008, 372, 3683-3693. doi: 10.1016/j.physleta.2008.02.047

    CrossRef Google Scholar

    [30] C. Yuan and X. Wen, Integrability, discrete kink multi-soliton solutions on an inclined plane background and dynamics in the modifed exponential Toda lattice equation, Nonlinear Dyn., 2021, 105, 643-669. doi: 10.1007/s11071-021-06592-z

    CrossRef Google Scholar

    [31] Y. Zhang, W. Ma and O. Unsal, A novel kind of AKNS integrable couplings and their Hamiltonian structures, Turk. J. Math., 2017, 41, 1467-1476. doi: 10.3906/mat-1511-123

    CrossRef Google Scholar

Figures(3)

Article Metrics

Article views(2330) PDF downloads(331) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint