Citation: | Weixuan Shi. THE ASYMPTOTIC BEHAVIOR OF STRONG SOLUTIONS TO THE CHEMOTAXIS MODEL IN THE CRITICAL FRAMEWORK[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1371-1385. doi: 10.11948/20210128 |
The Keller-Segel model is an effective mathematical model (derived by Keller and Segel), which is used to describe the phenomenon of chemotaxis in biological sciences. The purpose of this paper is to investigate the asymptotic behavior of solutions in the $ L^p $ framework by developing the pure energy approach (independent of spectral analysis). Precisely, a new low-frequency regularity of initial data is posted, which enables us to establish the Lyapunov-type inequality in time for energy norms. As a result, the large-time behavior of strong solutions near constant equilibrium can be obtained. The proof crucially depends on non standard product estimates and interpolations. It's worth noting that the smallness requirement of low frequencies is no longer needed.
[1] | H. Bahouri, J. Y. Chemin and R. Danchin, Fourier analysis and nonlinear partial differential equations, 343 of Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 2011. |
[2] | J. Y. Chemin, Théorèmes d'unicité pour le systèm de Navier-Stokes tridimensionnel, J. Amal. Math., 1999, 77(1), 27-50. |
[3] | J. Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Diff. Eqs., 1995, 121, 314-328. doi: 10.1006/jdeq.1995.1131 |
[4] | R. Danchin, On the well-posedness of the incompressible density-dependent Euler equations in the Lp framework, J. Diff. Eqs., 2010, 248(8), 2130-2170. doi: 10.1016/j.jde.2009.09.007 |
[5] | R. Danchin, Fourier analysis methods for the compressible Navier-Stokes equations, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (Edited by Y. Giga and A. Novotny), Springer International Publishing, Switzerland, 2016. |
[6] | R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Rational Mech. Anal., 2017, 224(1), 53-90. doi: 10.1007/s00205-016-1067-y |
[7] | C. Deng and T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Diff. Eqs., 2014, 257(5), 1311-1332. doi: 10.1016/j.jde.2014.05.014 |
[8] | J. Fan and K. Zhao, Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis, J. Math. Anal. Appl., 2012, 394(2), 687-695. doi: 10.1016/j.jmaa.2012.05.036 |
[9] | C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew. Math. Phys., 2012, 63, 825-834. doi: 10.1007/s00033-012-0193-0 |
[10] | E. Keller and L. Segel, Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis, J. Theor. Biol., 1970, 26(3), 399-415. doi: 10.1016/0022-5193(70)90092-5 |
[11] | E. Keller and L. Segel, Model for chemotaxis, J. Theor. Biol., 1971, 30(2), 225-234. doi: 10.1016/0022-5193(71)90050-6 |
[12] | E. Keller and L. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 1971, 30(2), 235-248. doi: 10.1016/0022-5193(71)90051-8 |
[13] | E. Lankeit and J. Lankeit, Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption, Nonlinear Anal., Real World Appl., 2019, 46, 421-445. doi: 10.1016/j.nonrwa.2018.09.012 |
[14] | H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 1997, 57(3), 683-730. doi: 10.1137/S0036139995291106 |
[15] | D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 2011, 21(8), 1631-1650. doi: 10.1142/S0218202511005519 |
[16] | T. Li, R. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Math. Anal., 2012, 72(1), 417-443. doi: 10.1137/110829453 |
[17] | V. Martinez, Z. Wang and K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 2018, 67(4), 1383-1424. doi: 10.1512/iumj.2018.67.7394 |
[18] | D. S. Mitrinoviéc, J. E. Pečarić and A. M. Fink, Inequalities for functions and their integrals and derivatives, Kluwer Academic Publishers, 2013. |
[19] | H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 1997, 57(4), 1044-1081. doi: 10.1137/S0036139995288976 |
[20] | W. Shi and J. Xu, A sharp time-weighted inequality of strong solutions to the compressible Navier-Stokes-Poisson system in the critical Lp framework, J. Diff. Eqs., 2019, 266(10), 6426-6458. doi: 10.1016/j.jde.2018.11.005 |
[21] | W. Xie, Y. Zhang, Y. Xiao and W. Wei, Global existence and convergence rates for the strong solutions in H2 to the 3D chemotaxis model, J. Appl. Math., 2013, 2013, 391056. |
[22] | Z. Xin and J. Xu, Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions, J. Diff. Eqs., 2021, 274(15), 543-575. |
[23] | F. Xu and X. Li, On the global existence and time-decay rates for a parabolic-hyperbolic model arising from chemotaxis, Commun. Contemp. Math., 2021. Doi: 10.1142/S0219199721500784. |
[24] | F. Xu, X. Li and C. Wang, The large-time behavior of the multi-dimensional hyperbolic-parabolic model arising from chemotaxis, J. Math. Phys., 2019, 60(9), 091509. doi: 10.1063/1.5120331 |
[25] | Y. Zeng and K. Zhao, On the logarithmic Keller-Segel-Fisher/KPP system, Discrete Contin. Dyn. Syst., Ser. A, 2019, 39(9), 5365-5402. doi: 10.3934/dcds.2019220 |
[26] | Y. Zeng and K. Zhao, Optimal decay rates for a chemotaxis model with logistic growth, logarithmic sensitivity and density-dependent production/consumption rate, J. Diff. Eqs., 2020, 268(4), 1379-1411. doi: 10.1016/j.jde.2019.08.050 |
[27] | Y. Zeng and K. Zhao, Recent results for the logarithmic Keller-Segel-Fisher/KPP system, Boi. Soc. Paran. Mat., 2020, 38(7), 37-48. |
[28] | M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Am. Math. Soc., 2007, 135(4), 1017-1027. doi: 10.1090/S0002-9939-06-08773-9 |