2022 Volume 12 Issue 4
Article Contents

Weixuan Shi. THE ASYMPTOTIC BEHAVIOR OF STRONG SOLUTIONS TO THE CHEMOTAXIS MODEL IN THE CRITICAL FRAMEWORK[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1371-1385. doi: 10.11948/20210128
Citation: Weixuan Shi. THE ASYMPTOTIC BEHAVIOR OF STRONG SOLUTIONS TO THE CHEMOTAXIS MODEL IN THE CRITICAL FRAMEWORK[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1371-1385. doi: 10.11948/20210128

THE ASYMPTOTIC BEHAVIOR OF STRONG SOLUTIONS TO THE CHEMOTAXIS MODEL IN THE CRITICAL FRAMEWORK

  • Corresponding author: Email: wxshi_0610@jiangnan.edu.cn(W.X. Shi)
  • Fund Project: The author was supported by the National Natural Science Foundation of China (12101263) and the Fundamental Research Funds for the Central Universities (JUSRP121047)
  • The Keller-Segel model is an effective mathematical model (derived by Keller and Segel), which is used to describe the phenomenon of chemotaxis in biological sciences. The purpose of this paper is to investigate the asymptotic behavior of solutions in the $ L^p $ framework by developing the pure energy approach (independent of spectral analysis). Precisely, a new low-frequency regularity of initial data is posted, which enables us to establish the Lyapunov-type inequality in time for energy norms. As a result, the large-time behavior of strong solutions near constant equilibrium can be obtained. The proof crucially depends on non standard product estimates and interpolations. It's worth noting that the smallness requirement of low frequencies is no longer needed.

    MSC: 35Q92, 35M31, 92C17, 35B40
  • 加载中
  • [1] H. Bahouri, J. Y. Chemin and R. Danchin, Fourier analysis and nonlinear partial differential equations, 343 of Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 2011.

    Google Scholar

    [2] J. Y. Chemin, Théorèmes d'unicité pour le systèm de Navier-Stokes tridimensionnel, J. Amal. Math., 1999, 77(1), 27-50.

    Google Scholar

    [3] J. Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Diff. Eqs., 1995, 121, 314-328. doi: 10.1006/jdeq.1995.1131

    CrossRef Google Scholar

    [4] R. Danchin, On the well-posedness of the incompressible density-dependent Euler equations in the Lp framework, J. Diff. Eqs., 2010, 248(8), 2130-2170. doi: 10.1016/j.jde.2009.09.007

    CrossRef Google Scholar

    [5] R. Danchin, Fourier analysis methods for the compressible Navier-Stokes equations, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (Edited by Y. Giga and A. Novotny), Springer International Publishing, Switzerland, 2016.

    Google Scholar

    [6] R. Danchin and J. Xu, Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework, Arch. Rational Mech. Anal., 2017, 224(1), 53-90. doi: 10.1007/s00205-016-1067-y

    CrossRef Google Scholar

    [7] C. Deng and T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Diff. Eqs., 2014, 257(5), 1311-1332. doi: 10.1016/j.jde.2014.05.014

    CrossRef Google Scholar

    [8] J. Fan and K. Zhao, Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis, J. Math. Anal. Appl., 2012, 394(2), 687-695. doi: 10.1016/j.jmaa.2012.05.036

    CrossRef Google Scholar

    [9] C. Hao, Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces, Z. Angew. Math. Phys., 2012, 63, 825-834. doi: 10.1007/s00033-012-0193-0

    CrossRef Google Scholar

    [10] E. Keller and L. Segel, Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis, J. Theor. Biol., 1970, 26(3), 399-415. doi: 10.1016/0022-5193(70)90092-5

    CrossRef Google Scholar

    [11] E. Keller and L. Segel, Model for chemotaxis, J. Theor. Biol., 1971, 30(2), 225-234. doi: 10.1016/0022-5193(71)90050-6

    CrossRef Google Scholar

    [12] E. Keller and L. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 1971, 30(2), 235-248. doi: 10.1016/0022-5193(71)90051-8

    CrossRef Google Scholar

    [13] E. Lankeit and J. Lankeit, Classical solutions to a logistic chemotaxis model with singular sensitivity and signal absorption, Nonlinear Anal., Real World Appl., 2019, 46, 421-445. doi: 10.1016/j.nonrwa.2018.09.012

    CrossRef Google Scholar

    [14] H. A. Levine and B. D. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 1997, 57(3), 683-730. doi: 10.1137/S0036139995291106

    CrossRef Google Scholar

    [15] D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci., 2011, 21(8), 1631-1650. doi: 10.1142/S0218202511005519

    CrossRef Google Scholar

    [16] T. Li, R. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Math. Anal., 2012, 72(1), 417-443. doi: 10.1137/110829453

    CrossRef Google Scholar

    [17] V. Martinez, Z. Wang and K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 2018, 67(4), 1383-1424. doi: 10.1512/iumj.2018.67.7394

    CrossRef Google Scholar

    [18] D. S. Mitrinoviéc, J. E. Pečarić and A. M. Fink, Inequalities for functions and their integrals and derivatives, Kluwer Academic Publishers, 2013.

    Google Scholar

    [19] H. G. Othmer and A. Stevens, Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 1997, 57(4), 1044-1081. doi: 10.1137/S0036139995288976

    CrossRef Google Scholar

    [20] W. Shi and J. Xu, A sharp time-weighted inequality of strong solutions to the compressible Navier-Stokes-Poisson system in the critical Lp framework, J. Diff. Eqs., 2019, 266(10), 6426-6458. doi: 10.1016/j.jde.2018.11.005

    CrossRef Google Scholar

    [21] W. Xie, Y. Zhang, Y. Xiao and W. Wei, Global existence and convergence rates for the strong solutions in H2 to the 3D chemotaxis model, J. Appl. Math., 2013, 2013, 391056.

    Google Scholar

    [22] Z. Xin and J. Xu, Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions, J. Diff. Eqs., 2021, 274(15), 543-575.

    Google Scholar

    [23] F. Xu and X. Li, On the global existence and time-decay rates for a parabolic-hyperbolic model arising from chemotaxis, Commun. Contemp. Math., 2021. Doi: 10.1142/S0219199721500784.

    CrossRef Google Scholar

    [24] F. Xu, X. Li and C. Wang, The large-time behavior of the multi-dimensional hyperbolic-parabolic model arising from chemotaxis, J. Math. Phys., 2019, 60(9), 091509. doi: 10.1063/1.5120331

    CrossRef Google Scholar

    [25] Y. Zeng and K. Zhao, On the logarithmic Keller-Segel-Fisher/KPP system, Discrete Contin. Dyn. Syst., Ser. A, 2019, 39(9), 5365-5402. doi: 10.3934/dcds.2019220

    CrossRef Google Scholar

    [26] Y. Zeng and K. Zhao, Optimal decay rates for a chemotaxis model with logistic growth, logarithmic sensitivity and density-dependent production/consumption rate, J. Diff. Eqs., 2020, 268(4), 1379-1411. doi: 10.1016/j.jde.2019.08.050

    CrossRef Google Scholar

    [27] Y. Zeng and K. Zhao, Recent results for the logarithmic Keller-Segel-Fisher/KPP system, Boi. Soc. Paran. Mat., 2020, 38(7), 37-48.

    Google Scholar

    [28] M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Am. Math. Soc., 2007, 135(4), 1017-1027. doi: 10.1090/S0002-9939-06-08773-9

    CrossRef Google Scholar

Article Metrics

Article views(2098) PDF downloads(340) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint