2022 Volume 12 Issue 1
Article Contents

Jose Luis Diaz Palencia, Federico Prieto Munoz, Juan Miguel Garcia-Haro. NON-HOMOGENEOUS REACTION IN A NON-LINEAR DIFFUSION OPERATOR WITH ADVECTION TO MODEL A MASS TRANSFER PROCESS[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 179-205. doi: 10.11948/20210096
Citation: Jose Luis Diaz Palencia, Federico Prieto Munoz, Juan Miguel Garcia-Haro. NON-HOMOGENEOUS REACTION IN A NON-LINEAR DIFFUSION OPERATOR WITH ADVECTION TO MODEL A MASS TRANSFER PROCESS[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 179-205. doi: 10.11948/20210096

NON-HOMOGENEOUS REACTION IN A NON-LINEAR DIFFUSION OPERATOR WITH ADVECTION TO MODEL A MASS TRANSFER PROCESS

  • It is the objective to provide a mathematical treatment of a non-homogeneous and non-lipschitz reaction problem with a non-linear diffusion and advection operator, so that it can be applied to a fire extinguishing process in aerospace. The main findings are related with the existence and characterization of a finite propagation support that emerges in virtue of the the non-linear diffusion formulation. It is provided a precise assessment on different times associated to the extinguisher discharge process. Particularly, the time required to activate the discharge, the time required for the extinguisher front to cover the whole domain, the time required to reach a minimum level of concentration so as to extinguish a fire and the time required by the agent to reach some difficult dead zones where the extinguisher propagates only by diffusion and no advection. The equation proposed is firstly discussed from a mathematical perspective to find analytical solutions and propagating profiles. Afterwards, the application exercise is introduced.

    MSC: 35K55, 35K57, 35K59, 35K65
  • 加载中
  • [1] P. Arturo and J. L. Vázquez, The balance between strong reaction and slow diffusion, Communications in Partial Differential Equations, 1990, 15, 159-183. doi: 10.1080/03605309908820682

    CrossRef Google Scholar

    [2] P. Arturo and J. L. Vázquez, Travelling Waves and Finite Propagation in a Reaction-Diffusion Equation, Journal of Differential Equations, 1991, 93, 19-61. doi: 10.1016/0022-0396(91)90021-Z

    CrossRef Google Scholar

    [3] J. Bedrossian, N. Rodríguez and A. Bertozzi, Local and global wellposedness for aggregation equations and patlak–keller–segel models with degenerate diffusion, Nonlinearity, 2001, 24(6), 1683.

    Google Scholar

    [4] J. M. Bennett, Principles, Testing and in-field experience for the fire panel fuel tank protection device, SAE, 2005.

    Google Scholar

    [5] A. Bertozzi and D. Slepcev, Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion, Communications on Pure and Applied Analysis, 2009, 9(6), 1617.

    Google Scholar

    [6] M. Bertsch and D. Hilhorst, A density dependent diffusion equation in population dynamics: stabilization to equilibrium, SIAM Journal on Mathematical Analysis, 1986, 17(4), 863-883. doi: 10.1137/0517062

    CrossRef Google Scholar

    [7] M. Bhatti, A. Zeeshan, R. Ellahi, O. Anwar Bég and A. Kadir, Effects of coagulation on the two-phase peristaltic pumping of magnetized prandtl biofluid through an endoscopic annular geometry containing a porous medium, Chin. J. Phys. 2019, 58, 222-23. https://doi.org/10.1016/j.cjph.2019.02.004. doi: 10.1016/j.cjph.2019.02.004

    CrossRef Google Scholar

    [8] D. Blake and J. Suo-Anttila, Aircraft cargo compartment fire detection and smoke transport modeling, Fire Safety Journal, 2008, 43(8), 576-582. doi: 10.1016/j.firesaf.2008.01.003

    CrossRef Google Scholar

    [9] A. De Pablo, Doctoral Thesis. Estudio de una ecuación de reacción-difusión, Universidad Autónoma de Madrid, 1989.

    Google Scholar

    [10] J. Díaz, Modeling of an aircraft fire extinguishing process with a porous medium equation. SN Appl. Sci, 2020, 2, 2108. https://doi.org/10.1007/s42452-020-03891-9. doi: 10.1007/s42452-020-03891-9

    CrossRef Google Scholar

    [11] L. Evans, Partial Differential Equations, Advanced Mathematical Society, United States of America, 2010.

    Google Scholar

    [12] R. Ferreira, A. De Pablo, G. Reyes and A. Sánchez, The interfaces of an inhomogeneous Porous Medium Equation with Convection, Comm. in Partial Diff. Eq., 2006, 31, 497-514. doi: 10.1080/03605300500481343

    CrossRef Google Scholar

    [13] E. R. Galea and N. C. Markatos, A review of mathematical modelling of aircraft cabin fires, Applied Mathematical Modelling, 1987, 11(3), 162-176. doi: 10.1016/0307-904X(87)90001-1

    CrossRef Google Scholar

    [14] B. Gilding, Improved theory for a nonlinear degenerate parabolic equation, Ann. Scu. Norm. Sup. Pisa, 1989, 16, 165-224.

    Google Scholar

    [15] P. Grasso, S. Mauro and A. Innocente, Two-dimensional reaction-advection-diffusion model of the spread of fire in wildlands, Book Chapter published in Advances in forest fire research, 2018, 334-342.

    Google Scholar

    [16] R. Harish and K. Venkatasubbaiah, Mathematical modeling and computation of fire induced turbulent flow in partial enclosures, Applied Mathematical Modelling, 2013, 37(23), 9732-9746. doi: 10.1016/j.apm.2013.05.011

    CrossRef Google Scholar

    [17] S. A. Hosseini, N. Darabiha and D. Thévenin, Lattice Boltzmann advection-diffusion model for conjugate heat transfer in heterogeneous media, International Journal of Heat and Mass Transfer, 2019, 132, 906-919. doi: 10.1016/j.ijheatmasstransfer.2018.12.034

    CrossRef Google Scholar

    [18] S. Kamin and P. Rosenau, Propagation of thermal waves in an inhomogeneous medium, Comm. Pure and Applied Math, 1989, 34, 831-852.

    Google Scholar

    [19] R. Kersner, G. Reyes and A. Tesei, On a class of parabolic equations with variable density and absorption, Adv. Diff. Equations, 2002, 7, 155-176.

    Google Scholar

    [20] J. Kim, B. Baek and J. Lee, Numerical analysis of flow characteristics of fire extinguishing agents in aircraft fire extinguishing systems, J. Mech. Sci Technol., 2009, 23, 1877-1884. doi: 10.1007/s12206-009-0618-7

    CrossRef Google Scholar

    [21] H. Li, Hopf Bifurcation of Delayed Density-Dependent Predator-Prey Model, Acta. Math. Sci, 2019, 39(2), 358-371.

    Google Scholar

    [22] A. Maranguides, R. Sheinson, R. Darwin, D. Kay and D. Barylski, Halon 1301 Retrofit Implementation Considerations, Naval Researh Laboratory, Combustion Dynamics Section.

    Google Scholar

    [23] S. Nazari, R. Ellahi, M. M. Sarafraz et al., Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity, J. Therm Anal Calorim, 2020, 140, 1121-1145. https://doi.org/10.1007/s10973-019-08841-1. doi: 10.1007/s10973-019-08841-1

    CrossRef Google Scholar

    [24] C. Pao, Nonlinear Parabolic and Elliptic Equations, Springer Science+Bussiness Media, North Carolina, United States of America, 2012.

    Google Scholar

    [25] T. A. Penteado, Analysis of fire extinguishing agent concentration in commercial aircraft cargo compartment, Master dissertation, Technological Institute of Aeronautics, 2004, 111.

    Google Scholar

    [26] J. Santrock and S. E. Hodges, Evaluation of automatic fire suppression system in full scale vehicle fire tests and static vehicle fire test, SAE, 2004.

    Google Scholar

    [27] A. Shahid, H. Huang, M. M. Bhatti, L. Zhang and R. Ellahi, Numerical Investigation on the Swimming of Gyrotactic Microorganisms in Nanofluids through Porous Medium over a Stretched Surface, Mathematics, 2020, 8, 380. https://doi.org/10.3390/math803038. doi: 10.3390/math803038

    CrossRef Google Scholar

    [28] J. L. Vázquez, The Porous Medium Equation, mathematical theory, Oxford Mathematical Monographs, Oxford, 2006.

    Google Scholar

    [29] Y. Zhang, Degenerate Diffusions with Advection, Doctoral Thesis, University of California, 2019.

    Google Scholar

    [30] Y. Zhou, Exact Solutions and dynamics of the Raman Soliton model in Nanoscale Optical Waveguides, with metamaterials, having parabolic law non-linearity, Journal of Applied Analysis & Computation, 2019, 9(1), 159-186. doi: 10.11948/2019.159.

    CrossRef Google Scholar

Figures(6)  /  Tables(1)

Article Metrics

Article views(2746) PDF downloads(428) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint