2022 Volume 12 Issue 1
Article Contents

Kangkang Chang, Qimin Zhang, Huaimin Yuan. STATIONARY DISTRIBUTION AND CONTROL STRATEGY OF A STOCHASTIC DENGUE MODEL WITH SPATIAL DIFFUSION[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 153-178. doi: 10.11948/20210094
Citation: Kangkang Chang, Qimin Zhang, Huaimin Yuan. STATIONARY DISTRIBUTION AND CONTROL STRATEGY OF A STOCHASTIC DENGUE MODEL WITH SPATIAL DIFFUSION[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 153-178. doi: 10.11948/20210094

STATIONARY DISTRIBUTION AND CONTROL STRATEGY OF A STOCHASTIC DENGUE MODEL WITH SPATIAL DIFFUSION

  • Corresponding author: Email: zhangqimin64@sina.com (Q. Zhang) 
  • Fund Project: The authors were supported by the Ningxia Natural Science Foundation (No. 2020AAC03067) and National Natural Science Foundation of China (No. 12161068)
  • In this paper, we establish a dengue model, which is described by the spatial diffusion and Brownian motion, and discuss the stationary distribution and optimal control of the stochastic dengue model. At first, we show the existence of the global positive solution by constructing Lyapunov function. The sufficient conditions are given for the existence and uniqueness of stationary distribution of the positive solution. Subsequently, we introduce the control strategy, namely, decrease the infected individual and spray mosquito insecticides. The first order necessary conditions are derived for the existence of optimal control by applying Pontryagins maximum principle. Finally, numerical simulations are introduced to confirm the analytical results. The simulation results verified the existence of stationary distribution, and there are certain differences in the solutions of the stationary distribution in different spaces. The influence of different noise intensity on the stationary distribution and the effect of different control strategy for stochastic dengue fever.

    MSC: 35E20, 37N35, 93E03
  • 加载中
  • [1] S. Aniţa and V. Capasso, Regional Control for Spatially Structured Mosquito Borne Epidemics, Vietnam Journal of Mathematics, 2021, 49(1), 21-35. doi: 10.1007/s10013-020-00395-2

    CrossRef Google Scholar

    [2] A. Abdelrazec, J. BšŠlair, C. Shan and H. Zhu, Modeling the spread and control of dengue with limited public health resources, Mathematical Biosciences, 2016, 271, 136-145. doi: 10.1016/j.mbs.2015.11.004

    CrossRef Google Scholar

    [3] L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Mathematical Biosciences, 1998, 150, 131-151. doi: 10.1016/S0025-5564(98)10003-2

    CrossRef Google Scholar

    [4] W. H. Fleming, and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, NY, USA, 1975.

    Google Scholar

    [5] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM review, 2001, 43(3), 525-546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [6] L. Hu, M. Tang, Z. Wu, Z. Xi and J. Yu, The threshold infection level for Wolbachia invasion in random environments, Journal of Differential Equations, 2019, 266(7), 4377-4393. doi: 10.1016/j.jde.2018.09.035

    CrossRef Google Scholar

    [7] M. Iftikhar, A. Sohail and N. Ahmad, Detrministic and stochastic analysis of dengue spread model, Biomedical Engineering: Applications. Basis and Communications, 2019, 31(03), Article ID 1950008.

    Google Scholar

    [8] M. A. Khan, A. Khan, A. Elsonbaty and A. A. Elsadany, Modeling and simulation results of a fractional dengue model, The European Physical Journal Plus, 2019, 134(8), 379-393. doi: 10.1140/epjp/i2019-12765-0

    CrossRef Google Scholar

    [9] T. K. Kar and S. Jana, Application of three controls optimally in a vector-borne disease-a mathematical study, Communications in Nonlinear Science and Numerical Simulation, 2013, 18(10), 2868-2884. doi: 10.1016/j.cnsns.2013.01.022

    CrossRef Google Scholar

    [10] H. Kuo, Introduction to Stochastic Integration, Springer, 2006.

    Google Scholar

    [11] K. Liu, Stationary Distributions of Second Order Stochastic Evolution Equations with Memory in Hilbert Spaces. Stochastic Processes and their Applications, 2020, 130, 366-393. doi: 10.1016/j.spa.2019.03.015

    CrossRef Google Scholar

    [12] Q. Liu, D. Jiang and T. Hayat, Stationary distribution and extinction of a stochastic dengue epidemic model, Journal of the Franklin Institute, 2018, 355, 8891-8914. doi: 10.1016/j.jfranklin.2018.10.003

    CrossRef Google Scholar

    [13] E. Massaro, D. Kondor and C. Ratti, Assessing the interplay between human mobility and mosquito borne diseases in urban environments, Scientific reports, 2019, 9(1), 1-13.

    Google Scholar

    [14] R. C. Mittal, R. Goel and N. Ahlawat, An Efficient Numerical Simulation of a Reaction-Diffusion Malaria Infection Model using B-splines Collocation, Chaos Solitons and Fractals, 2021, 143, Article ID 110566.

    Google Scholar

    [15] X. Mao, Stochastic Differential Equations and Applications (Second Edition), Horwood Publishing, Chichester, Horwood, 2007.

    Google Scholar

    [16] E. A. Newton and P. Reiter, A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics, The American journal of tropical medicine and hygiene, 1992, 47(6), 709-720. doi: 10.4269/ajtmh.1992.47.709

    CrossRef Google Scholar

    [17] C. Paupy, B. Ollomo, B. Kamgang, S. Moutailler, D. Rousset, M. Demanou, J. Hervé, E. Leroy and F. Simard, Comparative role of Aedes albopictus and Aedes aegypti in the emergence of dengue and chikungunya in central Africa, Vector-Borne and Zoonotic Diseases, 2010, 10(3), 259-266. doi: 10.1089/vbz.2009.0005

    CrossRef Google Scholar

    [18] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Maximum Principle. The Mathematical Theory of Optimal Processes, New York: John Wiley and Sons, 1962.

    Google Scholar

    [19] H. S. Rodriguesa, M. Teresab, T. Monteirob and D. F. Torresc, Seasonality effects on dengue: basic reproduction number, sensitivity analysis and optimal control, Mathematical Methods in the Applied Sciences, 2016, 39(16), 4671-4679. doi: 10.1002/mma.3319

    CrossRef Google Scholar

    [20] H. S. Rodriguesa, M. Teresab, T. Monteirob and D. F. Torresc, Optimal Control of a Dengue Epidemic Model with Vaccination, American Institute of Physics, 2011, 1389(1), 1232-1235.

    Google Scholar

    [21] L. Sedda, B. M. Taylor, A. E. Eiras, J. T. Marques and R. J. Dillon, Using the intrinsic growth rate of the mosquito population improves spatio-temporal dengue risk estimation, Acta. Tropica, 2020, 208, Article ID 105519.

    Google Scholar

    [22] W. Sun, L. Xue and X. Yan, Stability of a dengue epidemic model with independent stochastic perturbations, Journal of Mathematical Analysis and Applications, 2018, 468, 998-1017. doi: 10.1016/j.jmaa.2018.08.033

    CrossRef Google Scholar

    [23] T. Sardar, S. Rana and J. Chattopadhyay, A mathematical model of dengue transmission with memory, Commun Nonlinear Sci Numer Simulat, 2015, 22, 511-525. doi: 10.1016/j.cnsns.2014.08.009

    CrossRef Google Scholar

    [24] J. J. Tewa, J. L. Dimi and S. Bowong, Lyapunov functions for a dengue disease transmission model, Chaos Solitons and Fractals, 2009, 39, 936-941. doi: 10.1016/j.chaos.2007.01.069

    CrossRef Google Scholar

    [25] M. Umar, M. A. Z. Raja, Z. Sabir, A. S. Alwabli and M. Shoaib, A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment, The European Physical Journal Plus, 2020, 135(7), 1-23.

    Google Scholar

    [26] P. J. Witbooi, G. J. Abiodun, G. J. V. Schalkwyk and I. H. I. Ahmed, Stochastic modeling of a mosquito-borne disease, Advances in Difference Equations, 2020, 1, 1-15.

    Google Scholar

    [27] Y. Xue, L. Hu and L. Nie, Modelling the Wolbachia Strains for Dengue Fever Virus Control in the Presence of Seasonal Fluctuation, Journal of Nonlinear Modeling and Analysis, 2021, 3(2), 209-224.

    Google Scholar

    [28] J. Yong and X. Zhou, Stochastic Control: Hamiltonian Systems and HJB Equations, Springer, 1999.

    Google Scholar

    [29] M. Zhu, Z. Lin and L. Zhang, Spatial-temporal risk index and transmission of a nonlocal dengue model, Nonlinear Analysis: Real World Applications, 2020, 53, Article ID 103076.

    Google Scholar

    [30] L. Zhang and S. Wang, A time-periodic and reaction-diffusion Dengue fever model with extrinsic incubation period and crowding effects, Nonlinear Analysis: Real World Applications, 2020, 51, Article ID 102988.

    Google Scholar

    [31] M. Zhang and Z. Lin, The diffusive model for aedes aegypti mosouito on a periodically evolving domain, Dynamical Systems Series B, 2019, 24(9), 4703-4720.

    Google Scholar

Figures(7)

Article Metrics

Article views(2662) PDF downloads(610) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint