2022 Volume 12 Issue 1
Article Contents

Songnan Liu, Xiaojie Xu, Zhangyi Dong. LONG-TIME BEHAVIOR OF STOCHASTIC STAGED PROGRESSION EPIDEMIC MODEL WITH HYBRID SWITCHING FOR THE TRANSMISSION OF HIV[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 125-152. doi: 10.11948/20210085
Citation: Songnan Liu, Xiaojie Xu, Zhangyi Dong. LONG-TIME BEHAVIOR OF STOCHASTIC STAGED PROGRESSION EPIDEMIC MODEL WITH HYBRID SWITCHING FOR THE TRANSMISSION OF HIV[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 125-152. doi: 10.11948/20210085

LONG-TIME BEHAVIOR OF STOCHASTIC STAGED PROGRESSION EPIDEMIC MODEL WITH HYBRID SWITCHING FOR THE TRANSMISSION OF HIV

  • In this paper, one stochastic hybrid switching SP (staged progression) model for the transmission of HIV is proposed and investigated. The system disturbed by both white and telegraph noises, sufficient conditions for positive recurrence and the existence of an ergodic stationary distribution to the solutions are established. The existence of stationary distribution implies stochastic weak stability to some extent. Furthermore, sufficient conditions for extinction of disease are established. At last, some examples and simulations are provided to illustrate our results.

    MSC: 60H10, 34F05
  • 加载中
  • [1] T. Caraballo, M. E. Fatini and M. E. Khalifi, Analysis of a stochastic distributed delay epidemic model with relapse and gamma distribution kernel, Chaos Solitons Fractals, 2020, 133, 109-643.

    Google Scholar

    [2] Y. Cao, L. Qin, L. Zhang, J. Safrit and D. D. Ho, Virologic and immunologic characterization of long-term survivors of HIV type 1 infection, N. Engl. J. Med., 1995, 332, 201. doi: 10.1056/NEJM199501263320401

    CrossRef Google Scholar

    [3] R. Durrett, Stochastic spatial models, SIAM Rev., 1999, 41, 677-718. doi: 10.1137/S0036144599354707

    CrossRef Google Scholar

    [4] N. Du, R. Kon, K. Sato and Y. Takeuchi, Dynamical behavior of Lotka-Volterra competition systems: Non-autonomous bistable case and the effect of telegraph noise, J. Comput. Appl. Math., 2004, 170, 399-422. doi: 10.1016/j.cam.2004.02.001

    CrossRef Google Scholar

    [5] A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 2011, 71, 876-902. doi: 10.1137/10081856X

    CrossRef Google Scholar

    [6] J. Hyman, J. Li and E. Stanley, Modeling the impact of random screening and contact tracing in reducing the spread of HIV, Mathematical Biosciences, 2003, 181, 17-54. doi: 10.1016/S0025-5564(02)00128-1

    CrossRef Google Scholar

    [7] R. Z. Has'minskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1980.

    Google Scholar

    [8] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 2001, 43, 525-546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [9] J. Hyman and J. Li, An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations, Math. Biosci., 2000, 167, 65-86. doi: 10.1016/S0025-5564(00)00025-0

    CrossRef Google Scholar

    [10] J. M. Hyman, J. Li and E. A. Stanley, The differential infectivity and staged progression models for the transmission of HIV, Math. Biosci., 1999, 155, 77. doi: 10.1016/S0025-5564(98)10057-3

    CrossRef Google Scholar

    [11] J. M. Hyman, J. Li and E. A. Stanley, The initialization and sensitivity of multigroup models for the transmission of HIV, J. Theor. Biol., 2001, 208, 227. doi: 10.1006/jtbi.2000.2214

    CrossRef Google Scholar

    [12] A. Ida, S. Oharu and Y. Oharu, A mathematical approach to HIV infection dynamics, J. Comput. Appl. Math., 2007, 204, 172-186. doi: 10.1016/j.cam.2006.04.057

    CrossRef Google Scholar

    [13] J. A. Jacquez, J. S. Koopman, C. P. Simon and I. M. Longini, Role of the primary infection in epidemics of HIV infection in gay cohorts, J. AIDS., 1994, 7, 1169.

    Google Scholar

    [14] J. A. Jacquez, C. P. Simon and J. Koopman, Core groups and the R0s for subgroups in heterogeneous SIS and SI models, in: Mollison (Ed. ), Epidemic Models: Their Structure and Relation to Data, Cambridge University, Cambridge, 1995, 279.

    Google Scholar

    [15] J. Y. Kim, J. H. Ko, Y. Kim, Y. J. Kim and B. S. Chin, Viral load kinetics of SARS-CoV-2 infection in first two patients in Korea, J. Korean Med. Sci., 2020, 35, e86. doi: 10.3346/jkms.2020.35.e86

    CrossRef Google Scholar

    [16] S. Liu, X. Xu, D. Jiang, T. Hayatb and B. Ahmadb, Stationary distribution and extinction of the DS-I-A model disease with periodic parameter function and Markovian switching, Appl. Math. Comput., 2017, 311, 66-84.

    Google Scholar

    [17] S. Liu, D. Jiang, X. Xu, T. Hayatb and B. Ahmadb, Dynamics of hybrid switching DS-I-A epidemic model, Scientific Reports, 2017, 7(1).

    Google Scholar

    [18] Q. Liu, D. Jiang, N. Shi, T. Hayat and A. Alsaedi, Nontrivial periodic solution of a stochastic non-autonomous SISV epidemic model, Physica A, 2016, 462, 837-845. doi: 10.1016/j.physa.2016.06.041

    CrossRef Google Scholar

    [19] Q. Liu and D. Jiang, Stationary distribution of a stochastic staged progression HIV model with imperfect vaccination, Phys. A, 2019, 527, 121-271.

    Google Scholar

    [20] A. Lahrouz and L. Omari, Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence, Stat. Prob. Lett., 2013, 83, 960-968. doi: 10.1016/j.spl.2012.12.021

    CrossRef Google Scholar

    [21] F. Li, S. Zhang and X. Meng, Dynamics analysis and numerical simulations of a delayed stochastic epidemic model subject to a general response function, Comput. Appl. Math., 2019, 38, 95. doi: 10.1007/s40314-019-0857-x

    CrossRef Google Scholar

    [22] Z. Liu, Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates, Nonlinear Anal. Real World Appl., 2013, 14, 1286-1299. doi: 10.1016/j.nonrwa.2012.09.016

    CrossRef Google Scholar

    [23] Q. Luo and X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 2007, 334, 69-84. doi: 10.1016/j.jmaa.2006.12.032

    CrossRef Google Scholar

    [24] X. Mao, Stochastic Differential Equations and Their Applications, Horwood, Chichester, 1997.

    Google Scholar

    [25] S. E. Park, Epidemiology, virology, and clinical features ofsevere acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19), Clin. Exp. Pediatr., 2020, 63, 119-124. doi: 10.3345/cep.2020.00493

    CrossRef Google Scholar

    [26] S. Spencer, Stochastic epidemic models for emerging diseases, PhD. thesis, University of Nottingham, 2008.

    Google Scholar

    [27] A. Singh, B. Razooky, C. D. Cox, et al., Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression, Biophys, 2010, 98(8), L32-L34.

    Google Scholar

    [28] M. Slatkin, The dynamics of a population in a Markovian environment, Ecology, 1978, 59, 249-256. doi: 10.2307/1936370

    CrossRef Google Scholar

    [29] A. Settati and A. Lahrouz, Stationary distribution of stochastic population systems under regime switching, Appl. Math. Comput., 2014, 244, 235-243.

    Google Scholar

    [30] Y. Takeuchi, N. Du, N. T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., 2006, 323, 938-957. doi: 10.1016/j.jmaa.2005.11.009

    CrossRef Google Scholar

    [31] G. Zeluf-Andersson and L. Eriksson, Beyond viral suppression: The quality of life of people living with HIV in Sweden, AIDS Care, 2019, 31(4), 403-412. doi: 10.1080/09540121.2018.1545990

    CrossRef Google Scholar

    [32] L. Zu, D. Jiang and D. ORegan, Conditions for persistence and ergodicity of a stochastic lotkacvolterra predatorcprey model with regime switching, Commun. Nonlin. Sci. Numer. Simul., 2015, 29, 1-11. doi: 10.1016/j.cnsns.2015.04.008

    CrossRef Google Scholar

    [33] X. Zhang, D. Jiang, A. Alsaedi and T. Hayat, Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching, Appl. Math. Lett., 2016, 59, 87-93. doi: 10.1016/j.aml.2016.03.010

    CrossRef Google Scholar

    [34] C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim., 2007, 46, 1155-1179. doi: 10.1137/060649343

    CrossRef Google Scholar

    [35] B. Zhou, X. Zhang and D. Jiang, Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate. Chaos Solitons Fractals, 2020, 137, 109-865.

    Google Scholar

Figures(8)  /  Tables(2)

Article Metrics

Article views(2602) PDF downloads(388) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint