Citation: | Xhevat Z. Krasniqi, Włodzimierz Łenski, Bogdan Szal. APPROXIMATION OF INTEGRABLE FUNCTIONS BY GENERALIZED DE LA VALLÉE POUSSIN MEANS OF THE POSITIVE ORDER[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 106-124. doi: 10.11948/20210067 |
In this paper several results pertaining to the pointwise and normwise approximation of integrable functions by generalized de la Vallée Poussin means of positive order are presented. The pointwise estimates of the considered deviation in terms of pointwise moduli of continuity based on the Lebesgue points and points of differentiability of indefinite integral are obtained. Some results of L. Leindler and the second author are generalized.
[1] | J. Bustamante, Direct and strong converse inequalities for approximation with Fejér means, Demonstr. Math., 2020, 53(1), 80-85. doi: 10.1515/dema-2020-0051 |
[2] | P. Fatou, Series trigonometriques et series de Taylor, Acta Math., 1906, 31, 335-402. |
[3] | B. L. Ghodadra and V. Fülöp, A note on cosine series with coefficients of generalized bounded variation, Math. Slovaca, 2020, 70(3), 681-688. doi: 10.1515/ms-2017-0381 |
[4] | S. Z. Jafarov, Approximation of functions by de la Vallée-Poussin sums in weighted Orlicz spaces, Arab. J. Math. (Springer), 2016, 5(3), 125-137. doi: 10.1007/s40065-016-0148-y |
[5] | R. Kranz, On the pointwise summability of Fourier series by the Cesàro and Abel-Poisson means, Rendiconti del Circolo Matematico di Palermo. Serie Ⅱ Suppl., 2002, 68, 749-760. |
[6] | H. Lebesgue, Recherches sur la convergence des series de Fourier, Math. Annalen, 1905, 61, 251-280. doi: 10.1007/BF01457565 |
[7] | L. Leindler, On summability of Fourier series, Acta Sci. Math. (Szeged), 1968, 29, 147-162. |
[8] | W. Łenski, On the rate of pointwise summability of Fourier series, Applied Mathematics E-Notes, 2001, 1, 143-148. |
[9] | O. G. Rovenska and O. A. Novikov, On approximation of classes of analytic periodic functions by Fejér means, Chebyshevski Sb, 2020, 21(4), 218-226. |
[10] | R. Taberski, On the convergence of singular integrals (in Polish), Zeszyty Nauk. Uniw. Mickiewicza, 1960, 25, 33-51. |
[11] | Ü. Totur and I. Çanak, General Tauberian theorems for the Cesàro integrability of functions, Georgian Math. J., 2020, 27(4), 517-527. |
[12] | A. Zygmund, Trigonometric series, Cambridge, 2002. |