2022 Volume 12 Issue 1
Article Contents

Yiwei Wang, Lijun Zhang, Mingji Zhang. STUDIES ON INDIVIDUAL FLUXES VIA POISSON-NERNST-PLANCK MODELS WITH SMALL PERMANENT CHARGES AND PARTIAL ELECTRONEUTRALITY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 87-105. doi: 10.11948/20210045
Citation: Yiwei Wang, Lijun Zhang, Mingji Zhang. STUDIES ON INDIVIDUAL FLUXES VIA POISSON-NERNST-PLANCK MODELS WITH SMALL PERMANENT CHARGES AND PARTIAL ELECTRONEUTRALITY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 87-105. doi: 10.11948/20210045

STUDIES ON INDIVIDUAL FLUXES VIA POISSON-NERNST-PLANCK MODELS WITH SMALL PERMANENT CHARGES AND PARTIAL ELECTRONEUTRALITY CONDITIONS

  • We study a one-dimensional Poisson-Nernst-Planck system for ionic flows through membrane channels with two ion species, one positively charged and one negatively charged. Nonzero but small permanent charges are included. The cross-section area of the channel is included in the system, which provides certain information of the geometry of the three-dimensional channel. This is crucial for our analysis. Of particular interest is to analyze the qualitative properties of the individual fluxes with partial neutral boundary conditions, which provides complementary insights and better understanding of the ionic flow properties. Our study shows that the individual fluxes depend sensitively on multiple system parameters such as permanent charges, channel geometry, boundary conditions (concentrations and potentials) and boundary layers caused by the violation of electroneutrality conditions. Numerical simulations are further performed to provide a more intuitive illustration of our analytical results, and it turns out that numerical results are consistent with our analytical ones.

    MSC: 34A26, 34B16, 34D15, 37D10, 92C35
  • 加载中
  • [1] N. Abaid, R. S. Eisenberg and W. Liu, Asymptotic expansions of I-V relations via a Poisson-Nernst-Planck system, SIAM J. Appl. Dyn. Syst., 2008, 7, 1507-1526. doi: 10.1137/070691322

    CrossRef Google Scholar

    [2] R. Aitbayev, P. W. Bates, H. Lu, L. Zhang and M. Zhang, Mathematical studies of Poisson-Nernst-Planck systems: dynamics of ionic flows without electroneutrality conditions, J. Comput. Appl. Math., 2019, 362, 510-527. doi: 10.1016/j.cam.2018.10.037

    CrossRef Google Scholar

    [3] V. Barcilon, Ion flow through narrow membrane channels: Part I, SIAM J. Appl. Math., 1992, 52, 1391-14041. doi: 10.1137/0152080

    CrossRef Google Scholar

    [4] V. Barcilon, D. Chen and R. S. Eisenberg, Ion flow through narrow membrane channels: Part Ⅱ, SIAM J. Appl. Math., 1992, 52, 1405-1425. doi: 10.1137/0152081

    CrossRef Google Scholar

    [5] V. Barcilon, D. Chen, R. S. Eisenberg and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Perturbation and simulation study, SIAM J. Appl. Math., 1997, 57, 631-648. doi: 10.1137/S0036139995312149

    CrossRef Google Scholar

    [6] P. W. Bates, J. Chen and M. Zhang, Dynamics of ionic flows via Poisson-Nernst-Planck systems with local hard-sphere potentials: Competition between cations, Math. Biosci. Eng., 2020, 17, 3736-3766. doi: 10.3934/mbe.2020210

    CrossRef Google Scholar

    [7] P. W. Bates, Y. Jia, G. Lin, H. Lu and M. Zhang, Individual flux study via steady-state Poisson-Nernst-Planck systems: Effects from boundary conditions, SIAM J. Appl. Dyn. Syst., 2017, 16, 410-430. doi: 10.1137/16M1071523

    CrossRef Google Scholar

    [8] P. W. Bates, W. Liu, H. Lu and M. Zhang, Ion size and valence effects on ionic flows via Poisson-Nernst-Planck systems, Commun. Math. Sci., 2017, 15, 881-901. doi: 10.4310/CMS.2017.v15.n4.a1

    CrossRef Google Scholar

    [9] P. W. Bates, Z. Wen and M. Zhang, Small permanent charge effects on individual fluxes via Poisson-Nernst-Planck models with multiple cations, J. Nonlinear Sci., 2021, 31, 1-62. doi: 10.1007/s00332-020-09667-0

    CrossRef Google Scholar

    [10] D. Boda, D. Busath, B. Eisenberg, D. Henderson and W. Nonner, Monte Carlo simulations of ion selectivity in a biological Na+ channel: Charge-space competition, Phys. Chem. Chem. Phys., 2002, 4, 5154-5160. doi: 10.1039/B203686J

    CrossRef Google Scholar

    [11] J. Cartailler, Z. Schuss and D. Holcman, Analysis of the Poisson-Nernst-Planck equation in a ball for modeling the voltage-current relation in neurobiological microdomains, Phys. D: Nonlinear Phenomena, 2017, 339, 39-48. doi: 10.1016/j.physd.2016.09.001

    CrossRef Google Scholar

    [12] D. Chen and R. S. Eisenberg, Charges, currents and potentials in ionic channels of one conformation, Biophys. J., 1993, 64, 1405-1421. doi: 10.1016/S0006-3495(93)81507-8

    CrossRef Google Scholar

    [13] J. Chen, Y. Wan, L. Zhang and M. Zhang, Mathematical analysis of Poisson-Nernst-Planck models with permanent charges and boundary layers: Studies on individual fluxes, Nonlinearity, 2021, 34, 3879-3906. doi: 10.1088/1361-6544/abf33a

    CrossRef Google Scholar

    [14] J. Ding, Z. Wang and S. Zhou, Positivity preserving finite difference methods for Poisson-Nernst-Planck equations with steric interaction: application to slit-shaped nanopore conductance, J. Comput. Phys., 2019, 397, Article ID: 108864.

    Google Scholar

    [15] B. Eisenberg and W. Liu, Poisson-Nernst-Planck systems for ion channels with permanent charges, SIAM J. Math. Anal., 2007, 38, 1932-1966. doi: 10.1137/060657480

    CrossRef Google Scholar

    [16] B. Eisenberg, W. Liu and H. Xu, Reversal charge and reversal potential: case studies via classical Poisson-Nernst-Planck models, Nonlinearity, 2015, 28, 103-128. doi: 10.1088/0951-7715/28/1/103

    CrossRef Google Scholar

    [17] N. Gavish, Poisson-Nernst-Planck equations with steric effects- non-convexity and multiple stationary solutions, Phys. D: nonlinear Phenomena, 2018, 368, 50-65. doi: 10.1016/j.physd.2017.12.008

    CrossRef Google Scholar

    [18] N. Gavish, Poisson-Nernst-Planck equations with high-order steric effects, Phys. D: nonlinear Phenomena, 2020, 411, Article ID: 132536.

    Google Scholar

    [19] D. Gillespie, A singular perturbation analysis of the Poisson-Nernst-Planck system: Applications to Ionic Channels, Ph. D Dissertation, Rush University at Chicago, 1999.

    Google Scholar

    [20] D. Gillespie and R. S. Eisenberg, Modified Donnan potentials for ion transport through biological ion channels, Phys. Rev. E, 2001, 63, Article ID: 061902.

    Google Scholar

    [21] D. Gillespie, W. Nonner and R. S. Eisenberg, Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux, J. Phys. Condens. Matter, 2002, 14, 12129-12145. doi: 10.1088/0953-8984/14/46/317

    CrossRef Google Scholar

    [22] D. Gillespie, W. Nonner and R. S. Eisenberg, Density functional theory of charged, hard-sphere fluids, Phys. Rev. E, 2003, 68, Article ID: 0313503.

    Google Scholar

    [23] A. L. Hodgkin and R. D. Keynes, The potassium permeability of a giant nerve fibre, J. Physiol., 1955, 128, 61-88.

    Google Scholar

    [24] U. Hollerbach, D. Chen and R. S. Eisenberg, Two- and three-dimensional Poisson-Nernst-Planck simulations of current flow through Gramicidian-A, J. Comput. Sci., 2002, 16, 373-409.

    Google Scholar

    [25] Y. Hyon, B. Eisenberg and C. Liu, A mathematical model for the hard sphere repulsion in ionic solutions, Commun. Math. Sci., 2010, 9, 459-475.

    Google Scholar

    [26] Y. Hyon, J. Fonseca, B. Eisenberg and C. Liu, Energy variational approach to study charge inversion (layering) near charged walls, Discrete Contin. Dyn. Syst. Ser. B, 2012, 17, 2725-2743. doi: 10.3934/dcdsb.2012.17.2725

    CrossRef Google Scholar

    [27] Y. Hyon, C. Liu and B. Eisenberg, PNP equations with steric effects: a model of ion flow through channels, J. Phys. Chem. B, 2012, 116, 11422-11441. doi: 10.1021/jp305273n

    CrossRef Google Scholar

    [28] S. Ji, B. Eisenberg and W. Liu, Flux ratios and channel structures, J. Dyn. Diff. Equat., 2019, 31, 1141-1183. doi: 10.1007/s10884-017-9607-1

    CrossRef Google Scholar

    [29] S. Ji and W. Liu, Poisson-Nernst-Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I-V relations and Critical Potentials. Part I: Analysis, J. Dyn. Diff. Equat., 2012, 24, 955-983. doi: 10.1007/s10884-012-9277-y

    CrossRef Google Scholar

    [30] S. Ji, W. Liu and M. Zhang, Effects of (small) permanent charges and channel geometry on ionic flows via classical Poisson-Nernst-Planck models, SIAM J. Appl. Math., 2015, 75, 114-135. doi: 10.1137/140992527

    CrossRef Google Scholar

    [31] Y. Jia, W. Liu and M. Zhang, Qualitative properties of ionic flows via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Ion size effects, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21, 1775-1802. doi: 10.3934/dcdsb.2016022

    CrossRef Google Scholar

    [32] J. Kierzenka and L. Shampine, A BVP Solver Based on Residual Control and the Matlab PSE. ACM Trans. Math. Software, 2001, 27, 299-316. doi: 10.1145/502800.502801

    CrossRef Google Scholar

    [33] M. S. Kilic, M. Z. Bazant and A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. Ⅱ. Modified Poisson-Nernst-Planck equations, Phys. Rev. E, 2007, 75, Article ID: 021503.

    Google Scholar

    [34] M. G. Kurnikova, R. D. Coalson, P. Graf and A. Nitzan, A Lattice Relaxation Algorithm for 3D Poisson-Nernst-Planck Theory with Application to Ion Transport Through the Gramicidin A Channel, Biophys. J., 1999, 76, 642-656. doi: 10.1016/S0006-3495(99)77232-2

    CrossRef Google Scholar

    [35] G. Lin, W. Liu, Y. Yi and M. Zhang, Poisson-Nernst-Planck systems for ion flow with density functional theory for local hard-sphere potential, SIAM J. Appl. Dyn. Syst., 2013, 12, 1613-1648. doi: 10.1137/120904056

    CrossRef Google Scholar

    [36] W. Liu, Geometric singular perturbation approach to steady-state Poisson-Nernst-Planck systems, SIAM J. Appl. Math., 2005, 65, 754-766. doi: 10.1137/S0036139903420931

    CrossRef Google Scholar

    [37] W. Liu, One-dimensional steady-state Poisson-Nernst-Planck systems for ion channels with multiple ion species, J. Differ. Equations, 2009, 246, 428-451. doi: 10.1016/j.jde.2008.09.010

    CrossRef Google Scholar

    [38] J. Liu and B. Eisenberg, Molecular Mean-Field Theory of Ionic Solutions: a Poisson-Nernst-Planck-Bikerman Model, Entropy, 2020, 22, 550. doi: 10.3390/e22050550

    CrossRef Google Scholar

    [39] W. Liu, X. Tu and M. Zhang, Poisson-Nernst-Planck systems for ion flow with density functional theory for hard-sphere potential: I-V relations and critical potentials. Part Ⅱ: Numerics, J. Dyn. Diff. Equat., 2012, 24, 985-1004. doi: 10.1007/s10884-012-9278-x

    CrossRef Google Scholar

    [40] W. Liu and B. Wang, Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dyn. Diff. Equat., 2010, 22, 413-437. doi: 10.1007/s10884-010-9186-x

    CrossRef Google Scholar

    [41] W. Liu and H. Xu, A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow, J. Differ. Equations, 2015, 258, 1192-1228. doi: 10.1016/j.jde.2014.10.015

    CrossRef Google Scholar

    [42] H. Lu, J. Li, J. Shackelford, J. Vorenberg and M. Zhang, Ion size effects on individual fluxes via Poisson-Nernst-Planck systems with Bikerman's local hard-sphere potential: Analysis without electroneutrality boundary conditions, Discrete Contin. Dyn. Syst. Ser. B, 2018, 23, 1623-1643.

    Google Scholar

    [43] W. Nooner and R. S. Eisenberg, Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type Calcium channels, Biophys. J., 1998, 75, 1287-1305. doi: 10.1016/S0006-3495(98)74048-2

    CrossRef Google Scholar

    [44] J. K. Park and J. W. Jerome, Qualitative properties of steady-state Poisson-Nernst-Planck systems: Mathematical study, SIAM J. Appl. Math., 1997, 57, 609-630. doi: 10.1137/S0036139995279809

    CrossRef Google Scholar

    [45] S. Sahu and M. Zwolak, Golden aspect ration for ion transport simulation in nanopores, Phys. Rev. E, 2018, 98, Article ID: 012404.

    Google Scholar

    [46] Z. Schuss, B. Nadler and R. S. Eisenberg, Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model, Phys. Rev. E, 2001, 64, 1-14.

    Google Scholar

    [47] A. Singer and J. Norbury, A Poisson-Nernst-Planck model for biological ion channels-an asymptotic analysis in a three-dimensional narrow funnel, SIAM J. Appl. Math., 2009, 70, 949-968. doi: 10.1137/070687037

    CrossRef Google Scholar

    [48] A. Singer, D. Gillespie, J. Norbury and R. S. Eisenberg, Singular perturbation analysis of the steady-state Poisson-Nernst-Planck system: applications to ion channels, European J. Appl. Math., 2008, 19, 541-560. doi: 10.1017/S0956792508007596

    CrossRef Google Scholar

    [49] M. Valisk$\acute{o}$, B. Matejczyk, Z. Hat$\acute{o}$, T. Krist$\acute{o}$f, E. M$\acute{a}$dai, D. Fertig, D. Gillespie and D. Boda, Multiscale analysis of the effect of surface charge pattern on a nanopore's rectification and selectivity properties: From all-atom model to Poisson-Nernst-Planck, J. Chem. Phys., 2019, 150, Article ID: 144703.

    Google Scholar

    [50] X. Wang, D. He, J. Wylie and H. Huang, Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems, Phys. Rev. E, 2014, 89, 1-14.

    Google Scholar

    [51] Z. Wen, P. W. Bates and M. Zhang, Effects on I-V relations from small permanent charge and channel geometry via classical Poisson-Nernst-Planck equations with multiple cations, Nonlinearity, 2021, 34, 4464-4502. doi: 10.1088/1361-6544/abfae8

    CrossRef Google Scholar

    [52] Z. Wen, L. Zhang and M. Zhang, Dynamics of classical Poisson-Nernst-Planck systems with multiple cations and boundary layers, J. Dyn. Diff. Equat., 2021, 33, 211-234. doi: 10.1007/s10884-020-09861-4

    CrossRef Google Scholar

    [53] M. Zhang, Asymptotic expansions and numerical simulations of I-V relations via a steady-state Poisson-Nernst-Planck system, Rocky MT. J. Math., 2015, 45, 1681-1708.

    Google Scholar

    [54] M. Zhang, Boundary layer effects on ionic flows via classical Poisson-Nernst-Planck systems, Comput. Math. Biophys., 2018, 6, 14-27. doi: 10.1515/cmb-2018-0002

    CrossRef Google Scholar

    [55] M. Zhang, Competition between cations via Poisson-Nernst-Planck systems with nonzero but small permanent charges, Membranes, 2021, 11, 236. doi: 10.3390/membranes11040236

    CrossRef Google Scholar

Figures(3)

Article Metrics

Article views(2809) PDF downloads(386) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint