2022 Volume 12 Issue 1
Article Contents

Fangfang Jiang. EXISTENCE AND UNIQUENESS OF DISCONTINUOUS PERIODIC ORBITS IN SECOND ORDER DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT IMPULSES[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 69-86. doi: 10.11948/20210029
Citation: Fangfang Jiang. EXISTENCE AND UNIQUENESS OF DISCONTINUOUS PERIODIC ORBITS IN SECOND ORDER DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT IMPULSES[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 69-86. doi: 10.11948/20210029

EXISTENCE AND UNIQUENESS OF DISCONTINUOUS PERIODIC ORBITS IN SECOND ORDER DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT IMPULSES

  • Corresponding author: Fangfang Jiang, E-mail: jiangfangfang87@126.com
  • Fund Project: The author was supported by National Natural Science Foundation of China (11701224) and Natural Science Foundation of JiangSu Province-Provincial Youth Foundation (BK20170168)
  • In this paper, we are concerned with the existence and uniqueness of discontinuous periodic orbits for a class of second order impulsive differential equations with state-dependent jumps. we apply geometric method to estimate the time mapping of the equation, and then by using Poincaré-Bohl fixed point theorem to obtain some existence criteria under assumptions that the nonlinear term satisfies linear growth conditions. And, the uniqueness of the discontinuous periodic orbit is further proved. Finally, several specific impulsive functions are presented in examples to illustrate the obtained results.

    MSC: 34A12, 34A34, 34C25
  • 加载中
  • [1] D. Bainov and P. Simenov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical, Essex, England, 1993.

    Google Scholar

    [2] E. Bonotto, Flows of Characteristic in Impulsive Semidynamical Systems, J. Math. Anal. Appl., 2007, 332, 81-96. doi: 10.1016/j.jmaa.2006.09.076

    CrossRef Google Scholar

    [3] S. Balasuriya, Impulsive Perturbations to Differential Equations: Stable/Unstable Pseudo-Manifolds, Heteroclinic Connections, and Flux, Nonlinearity, 2016, 29(12), 3897-3933. doi: 10.1088/0951-7715/29/12/3897

    CrossRef Google Scholar

    [4] L. Chen, Theory and Application of Semicontinuous Dynamical System, J. YuLin Nomal University (Natural Science), 2013, 34(2), 2-10.

    Google Scholar

    [5] L. Chen, Applications of the Moser's Twist Theorem to Some Impulsive Differential Equations, Qual. Theor. Dyn. Syst., 2020, 19(2), 1-20.

    Google Scholar

    [6] K. Ciesielski, On Semicontinuity in Impulsive Systems, Bull Polish Acad Sci Math., 2004, 52, 71-80. doi: 10.4064/ba52-1-8

    CrossRef Google Scholar

    [7] T. Ding, Applications of Qualitative Methods of Ordinary Differential Equations, China Higher Education Press, Beijing, 2004.

    Google Scholar

    [8] T. Ding, R. Iannacci and F. Zanolin, Existence and Multiplicity Results for Periodic Solutions of Semilinear Duffing Equations, J. Diff. Eqs., 1993, 105, 364-409. doi: 10.1006/jdeq.1993.1093

    CrossRef Google Scholar

    [9] T. Ding and F. Zanolin, Periodic Solutions of Duffing's Equations with Superquadratic Potential, J. Diff. Eqs., 1992, 97, 328-378. doi: 10.1016/0022-0396(92)90076-Y

    CrossRef Google Scholar

    [10] T. Ding, An Infinite Class of Periodic Solutions of Periodically Perturbed Duffing Equations at Resonance, Proc. Amer. Math. Soc., 1982, 86(1), 47-54. doi: 10.1090/S0002-9939-1982-0663864-1

    CrossRef Google Scholar

    [11] Z. Hu and M. Han, Periodic Solutions and Bifurcations of First-order Impulsive Differential Equations, Internat. J. Bifur. Chaos, 2009, 19(8), 2515-2530. doi: 10.1142/S0218127409024281

    CrossRef Google Scholar

    [12] F. Jiang, D. W. Lu and J. Sun, Periodic Orbits Analysis in a Class of Planar Liénard Systems with State-Triggered Jumps, Internat. J. Bifur. Chaos, 2016, 26(9), Article ID 1650153.

    Google Scholar

    [13] F. Jiang, Existence of Periodic Solutions in Impulsive Differential Equations, J. Nonlinear Model. Anal., 2021, 3(1), 53-70.

    Google Scholar

    [14] S. Kaul, On Impulsive Semidynamical Systems, J. Math. Anal. Appl., 1990, 150(1), 120-128. doi: 10.1016/0022-247X(90)90199-P

    CrossRef Google Scholar

    [15] V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

    Google Scholar

    [16] J. Llibre, M. Ord$\acute{o}$nez and E. Ponce, On the Existence and Uniqueness of Limit Cycles in Planar Continuous Piecewise Linear Systems without Symmetry, Nonlinear Anal: Real, 2013, 14, 2002-2012.

    Google Scholar

    [17] Y. Niu and X. Li, Periodic Solutions of Semilinear Duffing Equations with Impulsive Effects, J. Math. Anal. Appl., 2018, 467(1), 349-370. doi: 10.1016/j.jmaa.2018.07.008

    CrossRef Google Scholar

    [18] Y. Niu and X. Li, An Application of Moser's Twist Theorem to Superlinear Impulsive Differential Equations, Discrete Cont. Dyn-A, 2019, 39(1), 431-445. doi: 10.3934/dcds.2019017

    CrossRef Google Scholar

    [19] D. Qian, L. Chen and X. Sun, Periodic Solutions of Superlinear Impulsive Differential Equations: A Geometric Approach, J. Diff. Eqs., 2015, 259(6), 3088-3106.

    Google Scholar

    [20] D. Qian, P. J. Torres and P. Wang, Periodic Solutions of Second Order Equations via Rotation Numbers, J. Diff. Eqs., 2019, 266, 4746-4768. doi: 10.1016/j.jde.2018.10.010

    CrossRef Google Scholar

    [21] D. Qian and P. J. Torres, Periodic Motions of Linear Impact Oscillators Via the Successor Map, SIAM J. Math. Anal., 2005, 36, 1707-1725. doi: 10.1137/S003614100343771X

    CrossRef Google Scholar

    [22] C. Rebelo and F. Zanolin, Multiplicity Results for Periodic Solutions of Second Order ODEs with Asymmetric Nonlinearities, Trans. Amer. Math. Soc., 1996, 348, 2349-2389. doi: 10.1090/S0002-9947-96-01580-2

    CrossRef Google Scholar

    [23] J. Shen, L. Chen and X. Yuan, Lagrange Stability for Impulsive Duffing Equations, J. Diff. Eqs., 2019, 266(11), 6924-6962. doi: 10.1016/j.jde.2018.11.022

    CrossRef Google Scholar

    [24] D. Wang, On the Existence of $2\pi$-Periodic Solutions of a Differential Equation $x"+g(x)=p(t)$, Ann. Math., 1984, 5A(1), 61-72.

    Google Scholar

    [25] X. Wang, D. Qian and X. Sun, Periodic Solutions of Second Order Equations with Asymptotical Nonresonance, Discrete Cont. Dyn-A, 2018, 38(9), 4715-4726. doi: 10.3934/dcds.2018207

    CrossRef Google Scholar

    [26] Z. Wang, Periodic Solutions of the Second Order Differential Equations with Lipschitzian Condition, Proc. Amer. Math. Soc., 1998, 2267-2276.

    Google Scholar

    [27] G. Zeng, L. Chen and L. Sun, Existence of Periodic Solution of Order-one of Planar Impulsive Autonomous System, J. Comput. Appl. Math., 2006, 186, 466-481. doi: 10.1016/j.cam.2005.03.003

    CrossRef Google Scholar

    [28] G. Zeng, F. Wang and J. Nieto, Complexity of a Delayed Predator-Prey Model with Impulsive Harvest and Holling-Type Ⅱ Functional Response, Adv. Complex Syst., 2008, 11, 77-97. doi: 10.1142/S0219525908001519

    CrossRef Google Scholar

    [29] H. Zhang, L. Chen and J. Nieto, A Delayed Epidemic Model with Stage Structure and Pulses for Management Strategy, Nonlinear Anal: Real, 2008, 9, 1714-1726. doi: 10.1016/j.nonrwa.2007.05.004

    CrossRef Google Scholar

Figures(4)

Article Metrics

Article views(2514) PDF downloads(386) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint