2022 Volume 12 Issue 1
Article Contents

Gaoxiang Yang, Xiaosong Tang. DYNAMICS ANALYSIS OF THREE-SPECIES REACTION-DIFFUSION SYSTEM VIA THE MULTIPLE SCALE PERTURBATION METHOD[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 206-229. doi: 10.11948/20210129
Citation: Gaoxiang Yang, Xiaosong Tang. DYNAMICS ANALYSIS OF THREE-SPECIES REACTION-DIFFUSION SYSTEM VIA THE MULTIPLE SCALE PERTURBATION METHOD[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 206-229. doi: 10.11948/20210129

DYNAMICS ANALYSIS OF THREE-SPECIES REACTION-DIFFUSION SYSTEM VIA THE MULTIPLE SCALE PERTURBATION METHOD

  • Corresponding author: Email address: tangxs40@126.com(X. Tang)
  • Fund Project: The authors were supported by the National Natural Science Foundation of China (No. 11761038), the National Science Foundation of Shaanxi (No. 2019JM-444) and the Research Fund of Ankang University (No. 2021AYPT17)
  • In this paper, the general analysis of spatiotemporal dynamics of three-species reaction-diffusion system induced by Turing bifurcation is given. Firstly, by employing the Routh-Hurwitz criterion the conditions for Turing bifurcation in three-species reaction-diffusion equations are obtained. Secondly, through the tool of the multiple scale perturbation method the amplitude equations of Turing patterns are also given. Finally, we take a three-species predator-prey model as an example to illustrate the application of these general theoretical results, and meanwhile carry out many numerical simulations to depict spots pattern, stripes pattern and labyrinthine pattern and demonstrate the validity of these theories.

    MSC: 35K57, 35B10
  • 加载中
  • [1] N. F. Britton, Spatial stuctures and periodic Traveling waves in an integro-differential reaction-diffusion population model, SIAM journal on Applied Mathematics, 1990, 50, 1663-1688. doi: 10.1137/0150099

    CrossRef Google Scholar

    [2] M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, Journal of Theoretical Biology, 2007, 245 220-229. doi: 10.1016/j.jtbi.2006.09.036

    CrossRef Google Scholar

    [3] X. Cao and W. Jiang, Interactions of Turing and Hopf bifurcations in an additional food provided diffusive predator-prey model, Journal of Applied Analysis and Computation, 2019, 9, 1277-1304. doi: 10.11948/2156-907X.20180224

    CrossRef Google Scholar

    [4] M. R. Garvie, Finite-Difference Schemes for Reaction-Diffusion Equations Modeling PredatorPrey Interactions in MATLAB, Bulletin of Mathematical Biology, 2007, 69, 931-956. doi: 10.1007/s11538-006-9062-3

    CrossRef Google Scholar

    [5] E. Giricheva, Spatiotemporal dynamics of an NPZ model with prey-taxis and intratrophic predation, Nonlinear Dynamics, 2019, 95, 875-892. doi: 10.1007/s11071-018-4601-7

    CrossRef Google Scholar

    [6] S. B. Hsu, T. W. Hwang and Y. Kuang, A ratio-dependent food chain model and its applications to biological control, Mathematical Biosciences, 2003, 18, 55-83.

    Google Scholar

    [7] O. Jensen, V. O. Pannbacker, G. Dewel and P. Borckmans, Subcritical transitions to Turing structures, Physics Letters A, 1993, 179, 91-96. doi: 10.1016/0375-9601(93)90655-J

    CrossRef Google Scholar

    [8] Y. Kuramoto, Chenmical Oscillation, Waves, and Turbulence, Springer-Verlag, Berlin, 1984.

    Google Scholar

    [9] J. D. Murray, Mathematical Biology: Spatial Models and Biomedical Applications, Springer-Verlag, New York, 2003.

    Google Scholar

    [10] P. Mishra, S. N. Raw and B. Tiwari, Study of a Leslie-Gower predator-prey model with prey defense and mutual interference of predators, Chaos Solitons Fractals, 2019, 120, 1-16. doi: 10.1016/j.chaos.2019.01.012

    CrossRef Google Scholar

    [11] N. Mukherjee, S. Ghorai and M. Banerjee, Detection of turing patterns in a three species food chain model via amplitude equation, Communications in Nonlinear Science and Numerical Simulation, 2019, 69, 219-236. doi: 10.1016/j.cnsns.2018.09.023

    CrossRef Google Scholar

    [12] E. Meron, Nonlinear physics of ecosystems, CRC Press, Boca Raton, 2015.

    Google Scholar

    [13] A. B. Medvinsky, S. V. Petrovskii, I. A. Tikhonova, H. Malchow and B. Li, Spatiotemporal complexity of plankton and fish dynamics, SIAM review, 2002, 44, 311-370. doi: 10.1137/S0036144502404442

    CrossRef Google Scholar

    [14] M. G. Neubert, H. Caswell and J. D. Murray, Transient dynamics and pattern formation: reactivity is necessary for Turing instabilities, Mathematical Biosciences, 2002, 175, 1-11. doi: 10.1016/S0025-5564(01)00087-6

    CrossRef Google Scholar

    [15] Q. Ouyang, Nonlinear Science and Dynamics of Pattern, Beijing Unversity Publication, Beijing, 2010.

    Google Scholar

    [16] R. D. Parshad, E. Quansah, K. Black, R. K. Upadhyay and S. K. Tiwari, Long time dynamics of a three-species food chain model with Allee effect in the top predator, Computers Mathematics with Applications, 2016, 71, 503-528. doi: 10.1016/j.camwa.2015.12.015

    CrossRef Google Scholar

    [17] H. Qian and J. D. Murray, A simple method of parameter space determination for diffusion-driven instability with three species, Applied Mathematics Letters, 2001, 14, 405-411. doi: 10.1016/S0893-9659(00)00169-5

    CrossRef Google Scholar

    [18] Y. Su and X. Zou, Rich spatial-temporal dynamics in a diffusive population model for pioneer-climax species, Nonlinear Dynamics, 2019, 95, 1731-1745. doi: 10.1007/s11071-018-4656-5

    CrossRef Google Scholar

    [19] R. A. Satnoianu, M. Menzinger and P. K. Maini, Turing instabilities in general systems, Journal of Mathematical Biology, 2000, 41, 493-512. doi: 10.1007/s002850000056

    CrossRef Google Scholar

    [20] Y. Song, H. Jiang, Q. Liu and Y. Yuan, Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation, SIAM Journal on Applied Dynamical Systems, 2017, 16, 2030-2062. doi: 10.1137/16M1097560

    CrossRef Google Scholar

    [21] G. Santu and P. Swarup, Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey-predator system supplying additional food, Chaos Solitons Fractals, 2016, 85, 57-67. doi: 10.1016/j.chaos.2016.01.013

    CrossRef Google Scholar

    [22] Y. Song, T. Zhang and Y. Peng, Turing-Hopf bifurcation in the reaction-diffusion equations and its applications, Communications in Nonlinear Science and Numerical Simulation, 2016, 33, 229-258. doi: 10.1016/j.cnsns.2015.10.002

    CrossRef Google Scholar

    [23] Y. Song, H. Jiang and Y. Yuan, Turing-Hopf bifurcation in the reaction-diffusion system with delay and application to a diffusive predator-prey model, Journal of Applied Analysis and Computation, 2019, 9, 1132-1164. doi: 10.11948/2156-907X.20190015

    CrossRef Google Scholar

    [24] A. M. Turing, The Chemical Basis of Morphogenesis, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1952, 237, 37-72.

    Google Scholar

    [25] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, New York, 1996.

    Google Scholar

    [26] K. A. J. White and C. A. Gilligan, Spatial heterogeneity in three species, plant-parasite-hyperparasite systems, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1998, 353, 543-557. doi: 10.1098/rstb.1998.0226

    CrossRef Google Scholar

    [27] S. Xu, M. Qu and C. Zhang, Investigating the Turing conditions for diffusion-driven instability in predator-prey system with hunting, Journal of Nonlinear Modeling and Analysis, 2021, 3(4), 663-676.

    Google Scholar

    [28] X. Zhang, G. Sun and Z. Jin, Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response, Physical Review E, 2012, 85, Article ID: 021924.

    Google Scholar

Figures(5)

Article Metrics

Article views(2965) PDF downloads(563) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint