2022 Volume 12 Issue 2
Article Contents

Shazia Sadiq, Mujeeb ur Rehman. ψ-SHIFTED OPERATIONAL MATRIX SCHEME FOR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 497-516. doi: 10.11948/20210101
Citation: Shazia Sadiq, Mujeeb ur Rehman. ψ-SHIFTED OPERATIONAL MATRIX SCHEME FOR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 497-516. doi: 10.11948/20210101

ψ-SHIFTED OPERATIONAL MATRIX SCHEME FOR FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

  • In this paper, we present a numerical method to solve space-time fractional partial differential equations. We introduce $ \psi$-shifted Chebyshev polynomials to construct operational matrices of fractional differentiation in the Caputo sense. These operational matrices are then used to find the solution of fractional partial differential equations. The efficiency and applicability of introduced numerical scheme is tested by comparing the proposed numerical approximations with the results obtained from existing numerical methods.

  • 加载中
  • [1] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 2017, 44(2017), 460-481.

    Google Scholar

    [2] R. Almeida, Functional differential equations involving the $ \psi$-Caputo fractional derivative, Fractal Fract., 2020, 4(2), 29. doi: 10.3390/fractalfract4020029

    CrossRef $ \psi$-Caputo fractional derivative" target="_blank">Google Scholar

    [3] R. Almeida, M. Jleli and B. Samet, A numerical study of fractional relaxation oscillation equations involving $ \psi$-Caputo fractional derivative, Rev. R. Acad. Cienc. Exactas, Fís. Nat. Ser. Madr., 2019, 113(3), 1873-1891. doi: 10.1007/s13398-018-0590-0

    CrossRef $ \psi$-Caputo fractional derivative" target="_blank">Google Scholar

    [4] M. Awadalla and Y. Y. Yameni, Modeling exponential growth and exponential decay real phenomena by $ \psi$-Caputo fractional derivative, J. Adv. Math. Comput. Sci., 2018, 1-13.

    $ \psi$-Caputo fractional derivative" target="_blank">Google Scholar

    [5] Z. Baitiche, C. Derbazi, J. Alzabut, M. E. Samei, M. K. Kaabar and Z. Siri, Monotone iterative method for $ \psi$-Caputo fractional differential equation with nonlinear boundary conditions, Fractal Fract., 2021, 5(3), 81. doi: 10.3390/fractalfract5030081

    CrossRef $ \psi$-Caputo fractional differential equation with nonlinear boundary conditions" target="_blank">Google Scholar

    [6] H. Dehestani, Y. Ordokhani and M. Razzaghi, Application of the modified operational matrices in multiterm variable-order time-fractional partial differential equations, Math. Meth. Appl. Sci., 2019, 42(18), 7296-7313. doi: 10.1002/mma.5840

    CrossRef Google Scholar

    [7] T. Dinu, Interpolation of the Functions with Two Variable Values with Simple Nodes, Bul. Univ. Petrol-Gaze Ploiesti., 2007, LIX(1), 7-12.

    Google Scholar

    [8] Q. H. Do, H. T. Ngo and M. Razzaghi, A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 2021, 95, 105597. doi: 10.1016/j.cnsns.2020.105597

    CrossRef Google Scholar

    [9] M. El-Kady and A. El-Sayed, Fractional differentiation matrices for solving fractional orders differential equations, Int. J. Pure Appl. Math., 2013, 84 (2), 1-13.

    Google Scholar

    [10] A. M. A. El-Sayed and M. Gaber, The Adomian decomposition method for solving partial differential equations of fractal order in finite domains, Phys. Lett. A., 2006, 359(3), 175-182. doi: 10.1016/j.physleta.2006.06.024

    CrossRef Google Scholar

    [11] W. Gander, Change of basis in polynomial interpolation, Numer. Linear Algebra Appl., 2005, 12(8), 769-778. doi: 10.1002/nla.450

    CrossRef Google Scholar

    [12] H. Hassani, J. T. Machado, Z. Avazzadeh and E. Naraghirad, Generalized shifted Chebyshev polynomials: Solving a general class of nonlinear variable order fractional PDE, Commun. Nonlinear Sci. Numer. Simul., 2020, 85, 105229. doi: 10.1016/j.cnsns.2020.105229

    CrossRef Google Scholar

    [13] M. H. Heydari, Z. Avazzadeh and M. F. Haromi, A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation, Appl. Math. Comput., 2019, 341(2019), 215-228.

    Google Scholar

    [14] H. Jafari and S. Seifi, Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation, Commun. Nonlinear Sci. Numer. Simul., 2009, 14(5), 2006-2012. doi: 10.1016/j.cnsns.2008.05.008

    CrossRef Google Scholar

    [15] M. Javidi and B. Ahmad, Numerical solution of fractional partial differential equations by numerical Laplace inversion technique, Adv. Differ. Equ., 2013, 2013(1), 1-18. doi: 10.1186/1687-1847-2013-1

    CrossRef Google Scholar

    [16] A. Kadem, The fractional transport equation: an analytical solution and a spectral approximation by Chebyshev polynomials, Appl. Sci., 2009, 11, 78-90.

    Google Scholar

    [17] S. Kumar and C. Piret, Numerical solution of space-time fractional PDEs using RBF-QR and Chebyshev polynomials, Appl. Numer. Math., 2019, 143(2019), 300-315.

    Google Scholar

    [18] M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad and S. Rezapour, Investigation of the $ p$-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021, 2021(1), 1-18. doi: 10.1186/s13662-020-03162-2

    CrossRef $ p$-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives" target="_blank">Google Scholar

    [19] S. Mockary, E. Babolian and A. R. Vahidi, A fast numerical method for fractional partial differential equations, Adv. Differ. Equ., 2019, 2019(1).

    Google Scholar

    [20] S. Momani and Z. Odibat, A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized Taylor's formula, J. Comput. Appl. Math., 2008, 220(1-2), 85-95. doi: 10.1016/j.cam.2007.07.033

    CrossRef Google Scholar

    [21] S. Nemati and Y. Ordokhani, Legendre expansion methods for the numerical solution of nonlinear 2D Fredholm integral equations of the second kind, J. Appl. Math. Informatics, 2013, 31(5-6), 609-621.

    Google Scholar

    [22] D. Occorsio and W. Themistoclakis, Uniform weighted approximation on the square by polynomial interpolation at Chebyshev nodes, Appl. Math. Comput., 2020 385, 125457.

    Google Scholar

    [23] M. Rehman, D. Baleanu, J. Alzabut, M. Ismail and U. Saeed, Green-Haar wavelets method for generalized fractional differential equations, Adv. Differ. Equ., 2020, 2020(1), 1-25. doi: 10.1186/s13662-019-2438-0

    CrossRef Google Scholar

    [24] M. Rehman and R. A. Khan, Numerical solutions to initial and boundary value problems for linear fractional partial differential equations, Appl. Math. Model, 2013, 37(7), 5233-5244. doi: 10.1016/j.apm.2012.10.045

    CrossRef Google Scholar

    [25] H. Singh and C. S. Singh, Stable numerical solutions of fractional partial differential equations using Legendre scaling functions operational matrix, Ain Shams Eng. J., 2018, 9(4), 717-725. doi: 10.1016/j.asej.2016.03.013

    CrossRef Google Scholar

    [26] C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etemad and S. Rezapour, On the qualitative analysis of the fractional boundary value problem describing thermostat control model via $\psi$-Hilfer fractional operator, Adv. Differ. Equ., 2021, 2021(1), 1-28. doi: 10.1186/s13662-020-03162-2

    CrossRef $ \psi$-Hilfer fractional operator" target="_blank">Google Scholar

    [27] H. Tu, Y. Wang, Q. Lan, W. Liu, W. Xiao and S. Ma, A Chebyshev-Tau spectral method for normal modes of underwater sound propagation with a layered marine environment, J. Sound and Vib., 2021, 492, 115784. doi: 10.1016/j.jsv.2020.115784

    CrossRef Google Scholar

    [28] D. Varsamis, P. Mastorocostas and N. Karampetakis, Transformations between two-variable polynomial bases with applications, Appl. Math. Inf. Sci., 2016, 10(4), 1303-1311. doi: 10.18576/amis/100409

    CrossRef Google Scholar

    [29] Z. Yang and H. Zhang, Chebyshev polynomials for approximation of solution of fractional partial differential equations with variable coefficients, IC3ME Atlantis Press, 2015.

    Google Scholar

    [30] M. Yi, J. Huang and J. Wei, Block pulse operational matrix method for solving fractional partial differential equation, Appl. Math. Comput., 2013, 221, 121-131.

    Google Scholar

    [31] F. Yin, J. Song, Y. Wu and L. Zhang, Numerical solution of the fractional partial differential equations by the two-dimensional fractional-order Legendre functions, Abstr. Appl. Anal., 2013, (2013).

    Google Scholar

    [32] Y. H. Youssri and R. M. Hafez, Chebyshev collocation treatment of Volterra-Fredholm integral equation with error analysis, Arab. J. Math., 2020, 9(2), 471-480. doi: 10.1007/s40065-019-0243-y

    CrossRef Google Scholar

Figures(6)  /  Tables(5)

Article Metrics

Article views(2721) PDF downloads(472) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint