2022 Volume 12 Issue 1
Article Contents

Boling Guo, Yamin Xiao, Yingzhe Ban. ORBITAL STABILITY OF SOLITARY WAVES FOR THE NONLINEAR SCHRÖDINGER-KDV SYSTEM[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 245-255. doi: 10.11948/20210142
Citation: Boling Guo, Yamin Xiao, Yingzhe Ban. ORBITAL STABILITY OF SOLITARY WAVES FOR THE NONLINEAR SCHRÖDINGER-KDV SYSTEM[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 245-255. doi: 10.11948/20210142

ORBITAL STABILITY OF SOLITARY WAVES FOR THE NONLINEAR SCHRÖDINGER-KDV SYSTEM

  • Author Bio: Email: gbl@iapcm.ac.cn(B. Guo); Email: banyingzhe@pku.edu.cn(Y. Ban)
  • Corresponding author: Email: xiaoyamin20@gscaep.ac.cn(Y. Xiao) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 11731014, 11571254)
  • This paper investigates the stability of solitary waves for the nonlinear Schrödinger-KdV system. We establish the existence and orbital stability of solitary waves solutions by applying the abstract results and detailed spectral analysis, and this result improves the previous one by Chen (1999).

    MSC: 35Q55, 35B35
  • 加载中
  • [1] J. P. Albert and J. L. Bona, Total positive and the stability of internal waves in stratified fluids of finite depth, IMA J. Appl. Math., 1991, 46, 1-19. doi: 10.1093/imamat/46.1-2.1

    CrossRef Google Scholar

    [2] R. Carles and C. Sparber, Orbital Stability vs. scattering in the cubic-quintic Schrödinger equation, Rev. Math. Phys., 2020. DOI: 10.1142/S0129055X21500045.

    CrossRef Google Scholar

    [3] L. Chen, Orbital stability of solitary waves of the nonlinear Schrödinger-KdV equation, J. Partial Diff. Eqs., 1999, 12(1), 11-25.

    Google Scholar

    [4] M. Colin and M. Ohta, Stability of solitary waves for derivative nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2006, 23, 753-764. doi: 10.1016/j.anihpc.2005.09.003

    CrossRef Google Scholar

    [5] A. J. Corcho and F. Linares, Well-posedness for the Schrödinger-Korteweg-De Vries system, Trans. Amer. Math. Soc., 2007, 359(9), 4089-4106. doi: 10.1090/S0002-9947-07-04239-0

    CrossRef Google Scholar

    [6] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 1987, 74, 160-197. doi: 10.1016/0022-1236(87)90044-9

    CrossRef Google Scholar

    [7] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry Ⅱ, J. Funct. Anal., 1990, 94, 308-348. doi: 10.1016/0022-1236(90)90016-E

    CrossRef Google Scholar

    [8] B. Guo, Existence and uniqueness of the global solution of the Cauchy problem and the periodic initial value problem for a class of the coupled system of KdV-nonlinear Schrödinger equations, Acta Math. Sinica (Chin. Ser. ), 1983, 26, 513-532.

    Google Scholar

    [9] B. Guo and L. Chen, Orbital stabiity of solitary waves of the Long Wave-Short Wave resonance equations, Math. Meth. Appl. Sci., 1998, 21(10), 883-894. doi: 10.1002/(SICI)1099-1476(19980710)21:10<883::AID-MMA974>3.0.CO;2-B

    CrossRef Google Scholar

    [10] B. Guo and C. Miao, Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations, Acta Math. Sin. (Engl. Ser. ), 1999, 15(2), 215-224.

    Google Scholar

    [11] B. Guo and L. Shen, The periodic initial value problem and the initial value problem for the system of KdV equation coupling with nonlinear Schrödinger equation, Proceedings of DD-3 Symposium, 1982, 417-435.

    Google Scholar

    [12] B. Guo and Y. Wu, Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation, J. Differential Equations, 1995, 123, 35-55. doi: 10.1006/jdeq.1995.1156

    CrossRef Google Scholar

    [13] V. I. Karpman, Stabilization of soliton instabilities by higher order dispersion: KdV-type equations, Phys. Lett. A, 1996, 210(1-2), 77-84. doi: 10.1016/0375-9601(95)00752-0

    CrossRef Google Scholar

    [14] V. I. Karpman, Lyapunov approach to the soliton stability in highly dispersive systems. Ⅱ. KdV-type equations, Phys. Lett. A, 1996, 215(5-6), 257-259. doi: 10.1016/0375-9601(96)00167-3

    CrossRef Google Scholar

    [15] X. Li and J. Zhao, Orbital stability of standing waves for Schrödinger type equations with slowly decaying linear potential, Comput. Math. Appl., 2020, 79(2), 303-316. doi: 10.1016/j.camwa.2019.06.030

    CrossRef Google Scholar

    [16] X. Liu, G. Simpson and C. Sulem, Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation, J. Nonlinear Sci., 2013, 23, 557-583. doi: 10.1007/s00332-012-9161-2

    CrossRef Google Scholar

    [17] X. Lu, A. Chen and T. Deng, Orbital stability of peakons for a generalized Camassa-Holm equation, J. Appl. Math. Phys., 2019, 7(10), 2200-2211. doi: 10.4236/jamp.2019.710151

    CrossRef Google Scholar

    [18] W. Zhang, H. Li, X. Bu and L. Bian, Orbital stability of solitary waves of compound KdV-type equation, Acta Math. Appl. Sin. Engl. Ser., 2015, 31(4), 1033-1042. doi: 10.1007/s10255-015-0525-x

    CrossRef Google Scholar

    [19] W. Zhang, X. Li, S. Li and X. Chen, Orbital stability of solitary waves for generalized Boussinesq equation with two nonlinear terms, Commun. Nonlinear Sci. Numer. Simul., 2018, 59, 629-650. doi: 10.1016/j.cnsns.2017.11.018

    CrossRef Google Scholar

    [20] X. Zheng, H. Di and X. Peng, Orbital stability of solitary waves for the generalized Long-Short wave resonance equations with a cubic-quintic strong nonlinear term, J. Inequal. Appl., 2020, 2020(1), 238. doi: 10.1186/s13660-020-02505-7

    CrossRef Google Scholar

Article Metrics

Article views(2775) PDF downloads(617) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint