Citation: | Boling Guo, Yamin Xiao, Yingzhe Ban. ORBITAL STABILITY OF SOLITARY WAVES FOR THE NONLINEAR SCHRÖDINGER-KDV SYSTEM[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 245-255. doi: 10.11948/20210142 |
This paper investigates the stability of solitary waves for the nonlinear Schrödinger-KdV system. We establish the existence and orbital stability of solitary waves solutions by applying the abstract results and detailed spectral analysis, and this result improves the previous one by Chen (1999).
[1] | J. P. Albert and J. L. Bona, Total positive and the stability of internal waves in stratified fluids of finite depth, IMA J. Appl. Math., 1991, 46, 1-19. doi: 10.1093/imamat/46.1-2.1 |
[2] | R. Carles and C. Sparber, Orbital Stability vs. scattering in the cubic-quintic Schrödinger equation, Rev. Math. Phys., 2020. DOI: 10.1142/S0129055X21500045. |
[3] | L. Chen, Orbital stability of solitary waves of the nonlinear Schrödinger-KdV equation, J. Partial Diff. Eqs., 1999, 12(1), 11-25. |
[4] | M. Colin and M. Ohta, Stability of solitary waves for derivative nonlinear Schrödinger equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2006, 23, 753-764. doi: 10.1016/j.anihpc.2005.09.003 |
[5] | A. J. Corcho and F. Linares, Well-posedness for the Schrödinger-Korteweg-De Vries system, Trans. Amer. Math. Soc., 2007, 359(9), 4089-4106. doi: 10.1090/S0002-9947-07-04239-0 |
[6] | M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 1987, 74, 160-197. doi: 10.1016/0022-1236(87)90044-9 |
[7] | M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry Ⅱ, J. Funct. Anal., 1990, 94, 308-348. doi: 10.1016/0022-1236(90)90016-E |
[8] | B. Guo, Existence and uniqueness of the global solution of the Cauchy problem and the periodic initial value problem for a class of the coupled system of KdV-nonlinear Schrödinger equations, Acta Math. Sinica (Chin. Ser. ), 1983, 26, 513-532. |
[9] | B. Guo and L. Chen, Orbital stabiity of solitary waves of the Long Wave-Short Wave resonance equations, Math. Meth. Appl. Sci., 1998, 21(10), 883-894. doi: 10.1002/(SICI)1099-1476(19980710)21:10<883::AID-MMA974>3.0.CO;2-B |
[10] | B. Guo and C. Miao, Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations, Acta Math. Sin. (Engl. Ser. ), 1999, 15(2), 215-224. |
[11] | B. Guo and L. Shen, The periodic initial value problem and the initial value problem for the system of KdV equation coupling with nonlinear Schrödinger equation, Proceedings of DD-3 Symposium, 1982, 417-435. |
[12] | B. Guo and Y. Wu, Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation, J. Differential Equations, 1995, 123, 35-55. doi: 10.1006/jdeq.1995.1156 |
[13] | V. I. Karpman, Stabilization of soliton instabilities by higher order dispersion: KdV-type equations, Phys. Lett. A, 1996, 210(1-2), 77-84. doi: 10.1016/0375-9601(95)00752-0 |
[14] | V. I. Karpman, Lyapunov approach to the soliton stability in highly dispersive systems. Ⅱ. KdV-type equations, Phys. Lett. A, 1996, 215(5-6), 257-259. doi: 10.1016/0375-9601(96)00167-3 |
[15] | X. Li and J. Zhao, Orbital stability of standing waves for Schrödinger type equations with slowly decaying linear potential, Comput. Math. Appl., 2020, 79(2), 303-316. doi: 10.1016/j.camwa.2019.06.030 |
[16] | X. Liu, G. Simpson and C. Sulem, Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation, J. Nonlinear Sci., 2013, 23, 557-583. doi: 10.1007/s00332-012-9161-2 |
[17] | X. Lu, A. Chen and T. Deng, Orbital stability of peakons for a generalized Camassa-Holm equation, J. Appl. Math. Phys., 2019, 7(10), 2200-2211. doi: 10.4236/jamp.2019.710151 |
[18] | W. Zhang, H. Li, X. Bu and L. Bian, Orbital stability of solitary waves of compound KdV-type equation, Acta Math. Appl. Sin. Engl. Ser., 2015, 31(4), 1033-1042. doi: 10.1007/s10255-015-0525-x |
[19] | W. Zhang, X. Li, S. Li and X. Chen, Orbital stability of solitary waves for generalized Boussinesq equation with two nonlinear terms, Commun. Nonlinear Sci. Numer. Simul., 2018, 59, 629-650. doi: 10.1016/j.cnsns.2017.11.018 |
[20] | X. Zheng, H. Di and X. Peng, Orbital stability of solitary waves for the generalized Long-Short wave resonance equations with a cubic-quintic strong nonlinear term, J. Inequal. Appl., 2020, 2020(1), 238. doi: 10.1186/s13660-020-02505-7 |