Citation: | Li-Tao Zhang, Ying-Chao Zhao, Yi-Fan Zhang, Sheng-Kun Li. RELAXED MODULUS-BASED SYNCHRONOUS MULTISPLITTING MULTI-PARAMETERS TOR (TWO-PARAMETERS OVER-RELAXATION) METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1403-1417. doi: 10.11948/20210166 |
In 2013, Bai and Zhang [Numerical Linear Algebra with Applications, 20(2013), 425–439] constructed modulus-based synchronous multisplitting methods by an equivalent reformulation of the linear complementarity problems into a system of fixed-point equations and studied the convergence of them. In 2014, Zhang and Li [Computers and Mathematics with Application, 67(2014), 1954–1959] analyzed and obtained the weaker convergence results for linear complementarity problems. In 2008, Zhang et.al. [International Journal of Computer Mathematics, 85(2), 2008, 211–224] presented global relaxed non-stationary multisplitting multi-parameter method by introducing some relaxed parameters. In this paper, we generalize Bai and Zhang's methods and study relaxed modulus-based synchronous multisplitting multi-parameters TOR (two-parameters over-relaxation, abbreviated as TOR) methods for linear complementarity problems. Furthermore, the convergence results of our new method in this paper are given when the system matrix is an $ H_{+}- $matrix.
[1] | Z. Bai and L. Zhang, Modulus-based synchronous multisplitting iteration methods for linear complementarity problems, Numerical Linear Algebra with Applications, 2013, 20, 425-439. doi: 10.1002/nla.1835 |
[2] | Z. Bai, On the convergence of the multisplitting methods for the linear complementarity problem, SIAM Journal on Matrix Analysis and Applications, 1999, 21, 67-78. doi: 10.1137/S0895479897324032 |
[3] | Z. Bai, The convergence of parallel iteration algorithms for linear complementarity problems, Computers and Mathematics with Applications, 1996, 32, 1-17. |
[4] | Z. Bai and D. J. Evans, Matrix multisplitting relaxation methods for linear complementarity problems, International Journal of Computer Mathematics, 1997, 63, 309-326. doi: 10.1080/00207169708804569 |
[5] | Z. Bai, On the monotone convergence of matrix multisplitting relaxation methods for the linear complementarity problem, IMA Journal of Numerical Analysis, 1998, 18, 509-518. doi: 10.1093/imanum/18.4.509 |
[6] | Z. Bai and D. J. Evans, Matrix multisplitting methods with applications to linear complementarity problems: parallel synchronous and chaotic methods, Reseaux et systemes repartis: Calculateurs Paralleles, 2001, 13, 125-154. |
[7] | Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numerical Linear Algebra with Applications, 2010, 17, 917-933. doi: 10.1002/nla.680 |
[8] | Z. Bai and L. Zhang, Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems, Numerical Algorithms, 2013, 62, 59-77. doi: 10.1007/s11075-012-9566-x |
[9] | Z. Bai and D. J. Evans, Matrix multisplitting methods with applications to linear complementarity problems: parallel asynchronous methods, International Journal of Computer Mathematics, 2002, 79, 205-232. doi: 10.1080/00207160211927 |
[10] | Z. Bai, J. Sun and D. Wang, A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations, Computers and Mathematics with Applications, 1996, 32, 51-76. |
[11] | A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979. |
[12] | R. W. Cottle, J. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press, San Diego, 1992. |
[13] | L. Cui, X. Zhang and Y. Zheng, A preconditioner based on a splitting-type iteration method for solving complex symmetric indefinite linear systems, Japan Journal of Industrial and Applied Mathematics, 2021, 38, 965-978. doi: 10.1007/s13160-021-00471-1 |
[14] | L. Cui, Q. Hu, Y. Chen and Y. Song, A Rayleigh quotient-gradient neural network method for computing Z-eigenpairs of general tensors, Numerical Linear Algebra with Applications, 2021. |
[15] | L. Cui, Y. Fan, Y. Song and S. Wu, The Existence and Uniqueness of Solution for Tensor Complementarity Problem and Related Systems, Journal of Optimization Theory and Applicaions, 2022, 192, 321-334. doi: 10.1007/s10957-021-01972-2 |
[16] | P. Dai, J. Li, J. Bai and J. Qiu, A preconditioned two-step modulus-based matrix splitting iteration method for linear complementarity problem, Applied Mathematics and Computation, 2019, 348, 542-551. doi: 10.1016/j.amc.2018.12.012 |
[17] | J. Dong and M. Jiang, A modified modulus method for symmetric positive-definite linear complementarity problems, Numerical Linear Algebra with Applications, 2009, 16, 129-143. doi: 10.1002/nla.609 |
[18] | M. C. Ferris and J. Pang, Engineering and economic applications of complementarity problems, SIAM Review, 1997, 39, 669-713. doi: 10.1137/S0036144595285963 |
[19] | A. Frommer and G. Mayer, Convergence of relaxed parallel multisplitting methods, Linear Algebra and Its Applications, 1989, 119, 141-152. doi: 10.1016/0024-3795(89)90074-8 |
[20] | A. Hadjidimos and M. Tzoumas, Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem, Linear Algebra and Its Applications, 2009, 431, 197-210. doi: 10.1016/j.laa.2009.02.024 |
[21] | J. Kuang, On the Two-parameter Overrelaxation Method for Numerical Solution of Large Linear Systems, Journal of Shanghai Normal University, 1983, 4, 1-11. |
[22] | W. Li, A general modulus-based matrix splitting method for linear complementarity problems of H-matrices, Applied Mathematics Letters, 2013, 26, 1159-1164. doi: 10.1016/j.aml.2013.06.015 |
[23] | F. Mezzadri and E. Galligani, On the convergence of modulus-based matrix splitting methods for horizontal linear complementarity problems in hydrodynamic lubrication, Mathematics and Computers in Simulation, 2020, 176, 226-242. doi: 10.1016/j.matcom.2020.01.014 |
[24] | K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Internet Edition, 1997. |
[25] | N. Machida, M. Fukushima and T. Ibaraki, A multisplitting method for symmetric linear complementarity problems, Journal of Computational and Applied Mathematics, 1995, 62, 217-227. doi: 10.1016/0377-0427(94)00103-2 |
[26] | D. P. O¡Leary and R. E. White, Multi-splittings of matrices and parallel solution of linear systems, SIAM Journal on Algebraic and Discrete Methods, 1985, 630, 630-640. |
[27] | H. Ren, X. Wang, X. Tang and T. Wang, A preconditioned general two-step modulus-based matrix splitting iteration method for linear complementarity problems of H+-matrices, Numerical Algorithms, 2019, 82, 969-986. doi: 10.1007/s11075-018-0637-5 |
[28] | H. Ren, X. Wang, X. Tang and T. Wang, The general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems, Computers and Mathematics with Applications, 2019, 77, 1071-1081. doi: 10.1016/j.camwa.2018.10.040 |
[29] | F. Robert, M. Charnay and F. Musy, Iterations chaotiques serie-parallel pour des equations non-lineaires de point fixe, Aplikace Matematiky, 1975, 20, 1-38. |
[30] | R. S. Varga, Matrix Iterative Analysis, Springer-Verlag: Berlin and Heidelberg, 2000. |
[31] | W. M. G. van Bokhoven, Piecewise-Linear Modelling and Analysis, Proefschrift, Eindhoven, 1981. |
[32] | B. Wen, H. Zheng, W. Li and X. Peng, The relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems of positive definite matrices, Applied Mathematics and Computation, 2018, 321, 349-357. doi: 10.1016/j.amc.2017.10.064 |
[33] | X. Wu, X. Peng and W. Li, A preconditioned general modulus-based matrix splitting iteration method for linear complementarity problems of H-matrices, Numerical Algorithms, 2018, 79, 1131-1146. doi: 10.1007/s11075-018-0477-3 |
[34] | D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1972. |
[35] | L. Zhang and Z. Ren, A modified modulus-based multigrid method for linear complementarity problems arising from free boundary problems, Applied Numerical Mathematics, 2021, 164, 89-100. doi: 10.1016/j.apnum.2020.09.008 |
[36] | L. Zhang and Z. Ren, Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems, Applied Mathematics Letters, 2013, 26, 638-642. doi: 10.1016/j.aml.2013.01.001 |
[37] | L. Zhang, T. Huang, S. Cheng and T. Gu, The weaker convergence of non-stationary matrix multisplitting methods for almost linear systems, Taiwanese Journal of Mathematics, 2011, 15, 1423-1436. |
[38] | L. Zhang and J. Li, The weaker convergence of modulus-based synchronous multisplitting multi-parameters methods for linear complementarity problems, Computers and Mathematics with Application, 2014, 67, 1954-1959. doi: 10.1016/j.camwa.2014.04.018 |
[39] | L. Zhang, X. Zuo, T. Gu and X. Liu, Improved convergence theorems of multisplitting methods for the linear complementarity problem, Applied Mathematics and Computation, 2014, 243, 982-987. doi: 10.1016/j.amc.2014.06.038 |
[40] | L. Zhang, Y. Zhang, T. Gu, X. Liu and L. Zhang, New convergence of modulus-based synchronous block multisplitting multi-parameters methods for linear complementarity problems, Computational and Applied Mathematics, 2015, 1-12. |
[41] | L. Zhang, T. Huang and T. Gu, Global relaxed non-stationary multisplitting multi-parameter methods, International Journal of Computer Mathematics, 2008, 85(2), 211-224. doi: 10.1080/00207160701405451 |
[42] | H. Zheng, S. Vong and L. Liu, The relaxation modulus-based matrix splitting iteration method for solving a class of nonlinear complementarity problems, International Journal of Computer Mathematics, 2019, 96, 1648-1667. doi: 10.1080/00207160.2018.1504928 |
[43] | H. Zheng, W. Li and S. Vong, An iteration method for nonlinear complementarity problems, Journal of Computational and Applied Mathematics, 2020, 372, 112681. doi: 10.1016/j.cam.2019.112681 |
[44] | H. Zheng and S. Vong, On convergence of the modulus-based matrix splitting iteration method for horizontal linear complementarity problems of H+-matrices, Applied Mathematics and Computation, 2020, 369, 124890. doi: 10.1016/j.amc.2019.124890 |