2022 Volume 12 Issue 1
Article Contents

Haoyu Wang, Yue Qu, Chenyin Qian. NEW BLOW-UP CRITERIA FOR 3D CHEMOTAXIS-NAVIER-STOKES EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 361-377. doi: 10.11948/20210221
Citation: Haoyu Wang, Yue Qu, Chenyin Qian. NEW BLOW-UP CRITERIA FOR 3D CHEMOTAXIS-NAVIER-STOKES EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 361-377. doi: 10.11948/20210221

NEW BLOW-UP CRITERIA FOR 3D CHEMOTAXIS-NAVIER-STOKES EQUATIONS

  • Corresponding author: Email address: qcyjcsx@163.com(C. Qian)
  • Fund Project: The authors were supported by Natural Science Foundation of Zhejiang Province (No.LY20A010017)
  • In this paper, we consider new blow-up criteria for the chemotaxis-Navier-Stokes equations in three dimensions. Specifically, by combining the Prodi-Serrin condition for oxygen concentration $\nabla c$ with some condition on the velocity or vorticity of fluid in Besov space, we establish new blow-up criteria for local existence of classical solutions for chemotaxis-Navier-Stokes equations. The scaling invariant blow-up criterion involving cell density n and gradient of velocity is also investigated.

    MSC: 76D03, 35Q53, 35Q92, 92C17
  • 加载中
  • [1] H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin. DOI:10.1007/978-3-642-16830-7.

    Google Scholar

    [2] H. Choe and B. Lkhagvasuren, An extension criterion for the local in time solution of the chemotaxis Navier-Stokes equations in the critical Besov spaces, Ann. Univ. Ferrara., 2017, 63, 277–288. doi: 10.1007/s11565-016-0265-8

    CrossRef Google Scholar

    [3] H. Choe, B. Lkhagvasuren and Y. Minsuk, Wellposedness of the Keller-Segel Navier-Stokes Equations in the critical Besov spaces, Commun. Pure Appl. Anal., 2015, 14, 2453–2464. doi: 10.3934/cpaa.2015.14.2453

    CrossRef Google Scholar

    [4] M. Chae, K. Kang and J. Lee, Existence of the smooth solutions to the coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst., 2013, 33, 2271–2297. doi: 10.3934/dcds.2013.33.2271

    CrossRef Google Scholar

    [5] M. Chae, K. Kang and J. Lee, Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations, Commun. Partial. Differ. Equ., DOI: 10.1080/03605302.2013.852224.

    Google Scholar

    [6] X. Cao, Global classical solutions in chemotaxis(-Navier)-Stokes system with rotational flux term, J. Differ. Equ., 2016, 261, 6883–6914. doi: 10.1016/j.jde.2016.09.007

    CrossRef Google Scholar

    [7] R. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fuid equations, Commun. Partial. Differ. Equ., 2010, 35, 1635–1673. doi: 10.1080/03605302.2010.497199

    CrossRef Google Scholar

    [8] M. Dai and H. Liu, Low modes regularity criterion for a chemotaxis-Navier-Stokes system, Commun. Pure Appl. Anal., 2020, 19, 2713–2735. doi: 10.3934/cpaa.2020118

    CrossRef Google Scholar

    [9] M. Francesco, A. Lorz and P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst. A., 2010, 28, 1437–1453. doi: 10.3934/dcds.2010.28.1437

    CrossRef Google Scholar

    [10] L. Ferreira and M. Postigo, Global well-posedness and asymptotic behavior in Besov-Morrey spaces for chemotaxis-Navier-Stokes fluids, J. Math. Phys., 2019, 60, 061502. doi: 10.1063/1.5080248

    CrossRef Google Scholar

    [11] H. He and Q. Zhang, Global existence of weak solutions for the 3D chemotaxis-Navier-Stokes equations, Nonlinear Anal. Real World Appl., 2017, 35, 336–349. doi: 10.1016/j.nonrwa.2016.11.006

    CrossRef Google Scholar

    [12] J. Jiang, H. Wu and S. Zheng, Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains, Asymptot. Anal., 2015, 92, 249–258.

    Google Scholar

    [13] M. Kurokiba and T. Ogawa, Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical spaces, J. Evol. Equ., 2020, 20, 421–457. doi: 10.1007/s00028-019-00527-3

    CrossRef Google Scholar

    [14] J. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2011, 28, 643–652. doi: 10.1016/j.anihpc.2011.04.005

    CrossRef Google Scholar

    [15] Y. Peng and Z. Xiang, Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions, J. Differ. Equ., 2019, 267, 1277–1321. doi: 10.1016/j.jde.2019.02.007

    CrossRef Google Scholar

    [16] Z. Tan and X. Zhang, Decay estimates of the coupled chemotaxis-fluid equations in $\mathbb{R}^3$, J. Math. Anal. Appl., 2014, 410, 27–38. doi: 10.1016/j.jmaa.2013.08.008

    CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar

    [17] Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2013, 30, 157–178. doi: 10.1016/j.anihpc.2012.07.002

    CrossRef Google Scholar

    [18] W. Tao and Y. Li, Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion, Nonlinear Anal. Real World Appl., 2019, 45, 26–52. doi: 10.1016/j.nonrwa.2018.06.005

    CrossRef $p$-Laplacian diffusion" target="_blank">Google Scholar

    [19] I. Tuval, L. Cisneros, C. Dombrowski, et al. Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA., 2005, 102, 2277–2282. doi: 10.1073/pnas.0406724102

    CrossRef Google Scholar

    [20] M. Winkler, Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source, Commun. Partial. Differ. Equ., 2010, 35, 1516–1537. doi: 10.1080/03605300903473426

    CrossRef Google Scholar

    [21] M. Winkler, Global large-data solutions in a Chemotaxis-(Navier-)Stokes system modeling cellular swimming in fuid drops, Commun. Partial. Differ. Equ., 2012, 37, 319–351. doi: 10.1080/03605302.2011.591865

    CrossRef Google Scholar

    [22] M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 2014, 211, 455–487. doi: 10.1007/s00205-013-0678-9

    CrossRef Google Scholar

    [23] M. Winkler, Global weak solutions in a three-dimensional Chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2016, 33, 1329–1352. doi: 10.1016/j.anihpc.2015.05.002

    CrossRef Google Scholar

    [24] H. Xie and C. Ma, On blow-up criteria for a coupled chemotaxis fluid model, J. Inequal. Appl., 2017, 30, 1–8.

    Google Scholar

    [25] X. Zhai and Z. Ying, Global solutions to the chemotaxis-Navier-Stokes equations with some large initial data, Discrete Contin. Dyn. Syst., 2017, 37(5), 2928–2859.

    Google Scholar

Article Metrics

Article views(2403) PDF downloads(486) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint