Citation: | Haoyu Wang, Yue Qu, Chenyin Qian. NEW BLOW-UP CRITERIA FOR 3D CHEMOTAXIS-NAVIER-STOKES EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 361-377. doi: 10.11948/20210221 |
In this paper, we consider new blow-up criteria for the chemotaxis-Navier-Stokes equations in three dimensions. Specifically, by combining the Prodi-Serrin condition for oxygen concentration $\nabla c$ with some condition on the velocity or vorticity of fluid in Besov space, we establish new blow-up criteria for local existence of classical solutions for chemotaxis-Navier-Stokes equations. The scaling invariant blow-up criterion involving cell density n and gradient of velocity is also investigated.
[1] | H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin. DOI:10.1007/978-3-642-16830-7. |
[2] | H. Choe and B. Lkhagvasuren, An extension criterion for the local in time solution of the chemotaxis Navier-Stokes equations in the critical Besov spaces, Ann. Univ. Ferrara., 2017, 63, 277–288. doi: 10.1007/s11565-016-0265-8 |
[3] | H. Choe, B. Lkhagvasuren and Y. Minsuk, Wellposedness of the Keller-Segel Navier-Stokes Equations in the critical Besov spaces, Commun. Pure Appl. Anal., 2015, 14, 2453–2464. doi: 10.3934/cpaa.2015.14.2453 |
[4] | M. Chae, K. Kang and J. Lee, Existence of the smooth solutions to the coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst., 2013, 33, 2271–2297. doi: 10.3934/dcds.2013.33.2271 |
[5] | M. Chae, K. Kang and J. Lee, Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations, Commun. Partial. Differ. Equ., DOI: 10.1080/03605302.2013.852224. |
[6] | X. Cao, Global classical solutions in chemotaxis(-Navier)-Stokes system with rotational flux term, J. Differ. Equ., 2016, 261, 6883–6914. doi: 10.1016/j.jde.2016.09.007 |
[7] | R. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fuid equations, Commun. Partial. Differ. Equ., 2010, 35, 1635–1673. doi: 10.1080/03605302.2010.497199 |
[8] | M. Dai and H. Liu, Low modes regularity criterion for a chemotaxis-Navier-Stokes system, Commun. Pure Appl. Anal., 2020, 19, 2713–2735. doi: 10.3934/cpaa.2020118 |
[9] | M. Francesco, A. Lorz and P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst. A., 2010, 28, 1437–1453. doi: 10.3934/dcds.2010.28.1437 |
[10] | L. Ferreira and M. Postigo, Global well-posedness and asymptotic behavior in Besov-Morrey spaces for chemotaxis-Navier-Stokes fluids, J. Math. Phys., 2019, 60, 061502. doi: 10.1063/1.5080248 |
[11] | H. He and Q. Zhang, Global existence of weak solutions for the 3D chemotaxis-Navier-Stokes equations, Nonlinear Anal. Real World Appl., 2017, 35, 336–349. doi: 10.1016/j.nonrwa.2016.11.006 |
[12] | J. Jiang, H. Wu and S. Zheng, Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains, Asymptot. Anal., 2015, 92, 249–258. |
[13] | M. Kurokiba and T. Ogawa, Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical spaces, J. Evol. Equ., 2020, 20, 421–457. doi: 10.1007/s00028-019-00527-3 |
[14] | J. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2011, 28, 643–652. doi: 10.1016/j.anihpc.2011.04.005 |
[15] | Y. Peng and Z. Xiang, Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions, J. Differ. Equ., 2019, 267, 1277–1321. doi: 10.1016/j.jde.2019.02.007 |
[16] | Z. Tan and X. Zhang, Decay estimates of the coupled chemotaxis-fluid equations in $\mathbb{R}^3$, J. Math. Anal. Appl., 2014, 410, 27–38. doi: 10.1016/j.jmaa.2013.08.008 |
[17] | Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2013, 30, 157–178. doi: 10.1016/j.anihpc.2012.07.002 |
[18] |
W. Tao and Y. Li, Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion, Nonlinear Anal. Real World Appl., 2019, 45, 26–52. doi: 10.1016/j.nonrwa.2018.06.005
CrossRef $p$-Laplacian diffusion" target="_blank">Google Scholar |
[19] | I. Tuval, L. Cisneros, C. Dombrowski, et al. Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA., 2005, 102, 2277–2282. doi: 10.1073/pnas.0406724102 |
[20] | M. Winkler, Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis System with Logistic Source, Commun. Partial. Differ. Equ., 2010, 35, 1516–1537. doi: 10.1080/03605300903473426 |
[21] | M. Winkler, Global large-data solutions in a Chemotaxis-(Navier-)Stokes system modeling cellular swimming in fuid drops, Commun. Partial. Differ. Equ., 2012, 37, 319–351. doi: 10.1080/03605302.2011.591865 |
[22] | M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 2014, 211, 455–487. doi: 10.1007/s00205-013-0678-9 |
[23] | M. Winkler, Global weak solutions in a three-dimensional Chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2016, 33, 1329–1352. doi: 10.1016/j.anihpc.2015.05.002 |
[24] | H. Xie and C. Ma, On blow-up criteria for a coupled chemotaxis fluid model, J. Inequal. Appl., 2017, 30, 1–8. |
[25] | X. Zhai and Z. Ying, Global solutions to the chemotaxis-Navier-Stokes equations with some large initial data, Discrete Contin. Dyn. Syst., 2017, 37(5), 2928–2859. |