Citation: | Zhongzi Zhao, Ruyun Ma, Yan Zhu. EXISTENCE AND MULTIPLICITY OF SIGN-CHANGING SOLUTIONS FOR THE DISCRETE PERIODIC PROBLEMS WITH MINKOWSKI-CURVATURE OPERATOR[J]. Journal of Applied Analysis & Computation, 2022, 12(1): 347-360. doi: 10.11948/20210218 |
We are concerned with the discrete periodic problems with Minkowski-curvature operator
$ \left\{\begin{array}{l} -\nabla(\frac{\Delta u(t)}{\sqrt{1-(\Delta u(t))^2}}) = \lambda g(t, u(t)), \quad t\in \mathbb{T}, \\ u(0) = u(T), u(1) = u(T+1), \end{array} \right. \qquad\qquad\qquad (P) $
where $ T>2 $ is an integer, $ \mathbb{T}: = \{1, 2, \cdots, T\} $, $ \mathbb{\hat{T}} = \{0, 1, \cdots, T, T+1\} $, $ \mathbb{Z}: = \{\cdots, -1, 0, 1, \cdots\} $, $ g:\mathbb{Z}\times \mathbb{R}\rightarrow \mathbb{R} $ is continuous, $ g_0: = \lim\limits_{s\rightarrow0}\frac{g(t, s)}{s} = +\infty $ uniformly for $ t\in \mathbb{\hat T} $, $ g $ is $ T $-periodic respect to $ t $, $ \lambda\in (0, \infty) $ is a parameter. We show that $ (P) $ has multiple odd sign-changing solutions and multiple even sign-changing solutions when $ g(t, \cdot) $ is odd. The proof of our main result is based upon bifurcation techniques.
[1] | F. M. Atici and A. Cabada, Existence and uniqueness results for discrete second-order periodic boundary value problems, Comput. Math. Appl., 2003, 45(6–9), 1417–1427. doi: 10.1016/S0898-1221(03)00097-X |
[2] | F. M. Atici, A. Cabada and V. Otero-Espinar, Criteria for existence and nonexistence of positive solutions to a discrete periodic boundary value problem, J. Difference Equ. Appl., 2003, 9(9), 765–775. doi: 10.1080/1023619021000053566 |
[3] | P. Benevieri, J. Marcos do Ó and E. S. de Medeiros, Periodic solutions for nonlinear equations with mean curvature-like operators, Appl. Math. Lett., 2007, 20(5), 484–492. doi: 10.1016/j.aml.2006.06.007 |
[4] | C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-Like perturbations of singular and bounded $\phi$-Laplacians, J. Dynam. Differential Equations, 2010, 22(3), 463–471. doi: 10.1007/s10884-010-9172-3 |
[5] | C. Bereanu and J. Mawhin, Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and $\phi$-Laplacian, NoDEA Nonlinear Differential Equations Appl., 2008, 15(1–2), 159–168. doi: 10.1007/s00030-007-7004-x |
[6] | C. Bereanu and H. B. Thompson, Periodic solutions of second order nonlinear difference equations with discrete $\phi$-Laplacian, J. Math. Anal. Appl., 2007, 330(2), 1002–1015. doi: 10.1016/j.jmaa.2006.07.104 |
[7] | C. Bereanu and M. Zamora, Periodic solutions for indefinite singular perturbations of the relativistic acceleration, Proc. R. Soc. Edinb. Sect. A., 2018, 148(4), 703–712. doi: 10.1017/S0308210518000239 |
[8] | A. Boscaggin and G. Feltrin, Positive periodic solutions to an indefinite Minkowski-curvature equation, J. Differential Equations, 2020, 269(7), 5595–5645. doi: 10.1016/j.jde.2020.04.009 |
[9] | I. Coelho, C. Corsato, F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 2012, 12(3), 621–638. doi: 10.1515/ans-2012-0310 |
[10] | I. Coelho, C. Corsato and S. Rivetti, Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball, Topol. Methods Nonlinear Anal., 2014, 44(1), 23–39. |
[11] | J. M. Coron, Periodic solutions of a nonlinear wave equation without monotonicity, Math. Ann., 1983, 262(2), 273–285. doi: 10.1007/BF01455317 |
[12] | G. Figueiredo and A. Suarez, Existence of positive solutions for prescribed mean curvature problems with nonlocal term via sub- and supersolution method, Math. Methods Appl. Sci., 2020, 43(15), 8496–8505. doi: 10.1002/mma.6505 |
[13] | M. Garcia-Huidobro and P. Ubilla, Multiplicity of solutions for a class of nonlinear second-order equations, Nonlinear Anal., 1997, 28(9), 1509–1520. doi: 10.1016/S0362-546X(96)00014-4 |
[14] | C. Gerhardt, H-surfaces in Lorentzian manifolds, Comm. Math. Phys., 1983, 89(4), 523–553. doi: 10.1007/BF01214742 |
[15] | D. Gurban, Radial non-potential Dirichlet systems with mean curvature operator in Minkowski space, Positivity, 2021, 25(1), 109–119. doi: 10.1007/s11117-020-00751-z |
[16] | J. Henderson and H. B. Thompson, Existence of multiple solutions for second-order discrete boundary value problems, Comput. Math. Appl., 2002, 43(10–11), 1239–1248. doi: 10.1016/S0898-1221(02)00095-0 |
[17] | W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications, Second edition, Harcourt/Academic Press, San Diego, CA, 2001. |
[18] | R. Ma and Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal., 2009, 71(10), 4364–4376. doi: 10.1016/j.na.2009.02.113 |
[19] | R. Ma and H. Ma, Existence of sign-changing periodic solutions of second order difference equations, Appl. Math. Comput., 2008, 203(2), 463–470. |
[20] | R. Ma and H. Ma, Unbounded perturbations of nonlinear discrete periodic problem at resonance, Nonlinear Anal., 2009, 70(7), 2602–2613. doi: 10.1016/j.na.2008.03.047 |
[21] | J. A. Marlin, Periodic motions of coupled simple pendulums with periodic disturbances, Int. J. Nonlinear Mech., 1968, 3, 439–447. doi: 10.1016/0020-7462(68)90030-9 |
[22] | J. Mawhin, A simple proof of multiplicity for periodic solutions of Lagrangian difference systems with relativistic operator and periodic potential, J. Difference Equ. Appl., 2016, 22(2), 306–315. doi: 10.1080/10236198.2015.1089867 |
[23] |
J. Mawhin, Periodic solutions of second order Lagrangian difference systems with bounded or singular $\phi$-Laplacian and periodic potential, Discrete Contin. Dyn. Syst. Ser. S, 2013, 6(4), 1065–1076.
$\phi$-Laplacian and periodic potential" target="_blank">Google Scholar |
[24] | Y. Naito and S. Tanaka, On the existence of multiple solutions of the boundary value problem for nonlinear second-order differential equations, Nonlinear Anal., 2004, 56(6), 919–935. doi: 10.1016/j.na.2003.10.020 |
[25] | P. Omari and E. Sovrano, Positive solutions of superlinear indefinite prescribed mean curvature problems, Commun. Contemp. Math., 2021, 23(3), Article ID 2050017, 25 pp. |
[26] | P. H. Rabinowitz, Nonlinear Sturm-Liouville problems for second order ordinary differential equations, Commun. Pure Appl. Math., 1970, 23, 939–961. doi: 10.1002/cpa.3160230606 |
[27] | P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 1971, 7, 487–513. doi: 10.1016/0022-1236(71)90030-9 |
[28] | S. H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering, Westview Press, New York, 1994. |
[29] | G. T. Whyburn, Topological Analysis, Princeton University Press, Princeton, 1958. |