Citation: | Haiyan Zhang, Jiafa Xu, Donal O'Regan. NONTRIVIAL RADIAL SOLUTIONS FOR A SYSTEM OF SECOND ORDER ELLIPTIC EQUATIONS[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2208-2219. doi: 10.11948/20210232 |
In this paper we use the topological degree and the Krein-Rutman theorem to investigate the existence of nontrivial radial solutions for a system of second order elliptic equations. Our results are obtained under some conditions involving the eigenvalues of a relevant linear operator.
[1] | G. A. Afrouzi and T. A. Roushan, Existence of positive radial solutions for some nonlinear elliptic systems, Bull. Math. Anal. Appl., 2011, 3(4), 146–154. |
[2] |
T. Alotaibi, D. Hai and R. Shivaji, Existence and nonexistence of positive radial solutions for a class of $p$-Laplacian superlinear problems with nonlinear boundary conditions, Commun. Pure Appl. Anal., 2020, 19(9), 4655–4666. doi: 10.3934/cpaa.2020131
CrossRef $p$-Laplacian superlinear problems with nonlinear boundary conditions" target="_blank">Google Scholar |
[3] | V. Anuradha, D. Hai and R. Shivaji, Existence results for superlinear semipositone BVP's, Proc. Amer. Math. Soc., 1996, 124(3), 757–763. doi: 10.1090/S0002-9939-96-03256-X |
[4] | M. Ben Chrouda and K. Hassine, Uniqueness of positive radial solutions for elliptic equations in an annulus, Proc. Amer. Math. Soc., 2021, 149(2), 649–660. |
[5] | A. Castro and S. Song, Infinitely many radial solutions for a super-cubic Kirchhoff type problem in a ball, Discrete Contin. Dyn. Syst. Ser. S, 2020, 13(12), 3347–3355. |
[6] |
K. Chu, D. Hai and R. Shivaji, Uniqueness of positive radial solutions for infinite semipositone $p$-Laplacian problems in exterior domains, J. Math. Anal. Appl., 2019, 472(1), 510–525. doi: 10.1016/j.jmaa.2018.11.037
CrossRef $p$-Laplacian problems in exterior domains" target="_blank">Google Scholar |
[7] |
K. Chu, D. Hai and R. Shivaji, Uniqueness of positive radial solutions for a class of infinite semipositone $p$-Laplacian problems in a ball, Proc. Amer. Math. Soc., 2020, 148(5), 2059–2067. doi: 10.1090/proc/14886
CrossRef $p$-Laplacian problems in a ball" target="_blank">Google Scholar |
[8] | K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. |
[9] | X. Dong and Y. Wei, Existence of radial solutions for nonlinear elliptic equations with gradient terms in annular domains, Nonlinear Anal., 2019, 187, 93–109. doi: 10.1016/j.na.2019.03.024 |
[10] | D. R. Dunninger and H. Wang, Multiplicity of positive radial solutions for an elliptic system on an annulus, Nonlinear Anal., 2000, 42(5), 803–811. doi: 10.1016/S0362-546X(99)00125-X |
[11] | K. Du, R. Peng and N. Sun, The role of protection zone on species spreading governed by a reaction-diffusion model with strong Allee effect, J. Differential Equations, 2019, 266(11), 7327–7356. doi: 10.1016/j.jde.2018.11.035 |
[12] | I. Flores, M. Franca and L. Iturriaga, Positive radial solutions involving nonlinearities with zeros, Discrete Contin. Dyn. Syst., 2019, 39(5), 2555–2579. doi: 10.3934/dcds.2019107 |
[13] | D. Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, volume 5 of Notes and Reports in Mathematics in Science and Engineering, Academic Press, Inc., Boston, MA, 1988. |
[14] | M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Translation, 1950, 1950(26), 128. |
[15] | K. Lan, Multiple positive solutions of semi-positone Sturm-Liouville boundary value problems, Bull. London Math. Soc., 2006, 38(2), 283–293, . doi: 10.1112/S0024609306018327 |
[16] | F. Li and Y. Fan, Existence and multiplicity of positive radial solutions for elliptic systems, Acta. Math. Sinica (Chin. Ser.), 1999, 42(4), 591–596. |
[17] | Y. Li, Positive radial solutions for elliptic equations with nonlinear gradient terms on the unit ball, Mediterr. J. Math., 2020, 17(6), 13. |
[18] | R. Ma, Existence of positive radial solutions for elliptic systems, J. Math. Anal. Appl., 1996, 201(2), 375–386. doi: 10.1006/jmaa.1996.0261 |
[19] | N. Sun and X. Han, Asymptotic behavior of solutions of a reaction-diffusion model with a protection zone and a free boundary, Appl. Math. Lett., 2020, 107, 7. |
[20] | N. Sun, A time-periodic reaction-diffusion-advection equation with a free boundary and signchanging coefficients, Nonlinear Anal. Real World Appl., 2020, 51, 28. |
[21] | N. Sun and J. Fang, Propagation dynamics of Fisher-KPP equation with time delay and free boundaries, Calc. Var. Partial Differential Equations, 2019, 58(4), 38. |
[22] | N. Sun, B. Lou and M. Zhou, Fisher-KPP equation with free boundaries and time-periodic advections, Calc. Var. Partial Differential Equations, 2017, 56(3), 36. |
[23] | N. Sun and C. Lei, Long-time behavior of a reactiondiffusion model with strong allee effect and free boundary: Effect of protection zone, J. Dyn. Differ. Equ., 2021. |
[24] | J. Tian and Y. Wei, Radial solution of asymptotically linear elliptic equation with mixed boundary value in annular domain, J. Appl. Anal. Comput., 2020, 10(6), 2787–2805. |
[25] | H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations, 1994, 109(1), 1–7. doi: 10.1006/jdeq.1994.1042 |
[26] | E. Zeidler, Nonlinear functional analysis and its applications, I. Springer-Verlag, New York, 1986. Fixed-point theorems, Translated from the German by Peter R. Wadsack. |