2022 Volume 12 Issue 2
Article Contents

Minzhi Wei, Zizun Li. EXISTENCE OF KINK WAVES TO PERTURBED DISPERSIVE K(3, 1) EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 712-719. doi: 10.11948/20210293
Citation: Minzhi Wei, Zizun Li. EXISTENCE OF KINK WAVES TO PERTURBED DISPERSIVE K(3, 1) EQUATION[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 712-719. doi: 10.11948/20210293

EXISTENCE OF KINK WAVES TO PERTURBED DISPERSIVE K(3, 1) EQUATION

  • Corresponding author: Email: zizunli02@126.com (Z. Li)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12161060) and Guangxi College Enhancing Youths Capacity Project (2020KY16019, 2020KY09019)
  • This paper concerns on the existence problem of traveling wave solutions to perturbed dispersive K(3, 1) equation by using geometric singular perturbation technique. Based on the analogy between solitary wave solutions and heteroclinic orbits of the associated ordinary differential equations, kink and antikink waves persistent is concluded when the perturbed parameter is small sufficiently in perturbed nonlinear wave equation.

    MSC: 34C07, 34D10, 37G20
  • 加载中
  • [1] A. Chen, L. Guo and X. Deng, Existence of solitary waves and periodic waves for a perturbed generalized BBM equation, J. Diff. Equat., 2016, 261, 5324-5349. doi: 10.1016/j.jde.2016.08.003

    CrossRef Google Scholar

    [2] C. Cheng and T. Kš1pper, Dynamical behavior of two-soliton solution exhibited by perturbed sine-Gordon equation. Math. Nachr., 1995, 171, 53šC77.

    Google Scholar

    [3] T. Cosgun and M. Sari, Traveling wave solutions and stability behaviours under advection dominance for singularly perturbed advection-diffusion-reaction processes, Chaos, Solitons & Fractals, 2020, 138, 109881.

    Google Scholar

    [4] P. T. Dinda and M. Remoissenet, Breather compactons in nonlinear Klein-Gordon systems, Phys. Rev. E, 1999, 60, 6218-6221. doi: 10.1103/PhysRevE.60.6218

    CrossRef Google Scholar

    [5] Z. Du and Q. Qiao, The dynamics of traveling waves for a nonlinear Belousov-Zhabotinskii system, J. Diff. Equat., 2020, 269, 7214-7230. doi: 10.1016/j.jde.2020.05.033

    CrossRef Google Scholar

    [6] Z. Du, J. Liu and Y. Ren, Traveling pulse solutions of a generalized Keller-Segel system with small cell diffusion via a geometric approach, J. Diff. Equat., 2021, 270, 1019-1042. doi: 10.1016/j.jde.2020.09.009

    CrossRef Google Scholar

    [7] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differ. Equat., 1979, 31, 53-98. doi: 10.1016/0022-0396(79)90152-9

    CrossRef Google Scholar

    [8] A. Ghazaryan, S. Lafortune and C. Linhart, Flame propagation in a porous medium, Physica D, 2020, 413, 132653. doi: 10.1016/j.physd.2020.132653

    CrossRef Google Scholar

    [9] J. Ge and Z. Du, The solitary wave solutions of the nonlinear perturbed shallow water wave model, Appl. Math. Lett., 2020, 103, 106202. doi: 10.1016/j.aml.2019.106202

    CrossRef Google Scholar

    [10] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical System, and Bifurcation of Vector Fields, Springer Verlag, New York, 1983.

    Google Scholar

    [11] M. Han, Bifurcation Theory and Periodical Solution of Dynamic System, Beijing: Science Press, 2002.

    Google Scholar

    [12] C. K. R. T. Jones., Geometric singular perturbation theory. Lecture Notes Math, Springer-Verlag, 1994, 1609, 45-118.

    Google Scholar

    [13] Y. Kivshar, Compactons in discrete lattices, Nonlinear Coherent Struct, Phys. Biol., 1994, 329, 255-258.

    Google Scholar

    [14] J. Li and H. Dai, On the Study of Singular Nonlinear Travelling Wave Equations: Dynamical Approach, Science Press, Beijing, 2007.

    Google Scholar

    [15] X. Li, Z. Du and S. Ji, Existence results of solitary wave solutions for a delayed Camassa-Holm-KP equation, Commun. Pure & Appl. Ana., 2019, 18, 2961-2981.

    Google Scholar

    [16] M. B. A. Mansour, A geometric construction of traveling waves in a generalized nonlinear dispersive-dissipative equation, J. Geom. Phys., 2013, 69, 116-122. doi: 10.1016/j.geomphys.2013.03.004

    CrossRef Google Scholar

    [17] L. Perko, Differential Equations and Dynamical Systems, New York: Springer Science & Business Media, 2013.

    Google Scholar

    [18] P. Rosenau and J. M. Hyman, Compactons: solitons with finite wavelength, Phys. Rev. Lett., 1993, 70, 564-567. doi: 10.1103/PhysRevLett.70.564

    CrossRef Google Scholar

    [19] P. Rosenau, On nonanalytic solitary waves formed by a nonlinear dispersion, Phys. Lett. A, 1997, 230, 305-318. doi: 10.1016/S0375-9601(97)00241-7

    CrossRef Google Scholar

    [20] Z. Wen, On existence of kink and antikink wave solutions of singularly perturbed Gardner equation, Math. Meth. Appl. Sci., 2020, 1-6.

    Google Scholar

    [21] X. Wu, W. Rui and X. Hong, Exact traveling wave solutions of explicit type, implicit type, and parametric type for K(m, n) equation, J. Appl. Math., 2012, 236875.

    Google Scholar

    [22] W. Yan, Z. Liu and Y. Liang, Existence of solitary waves and periodic waves to a perturbed generalized KdV equation, Math. Model. Anal., 2014, 19, 537-555. doi: 10.3846/13926292.2014.960016

    CrossRef Google Scholar

Figures(3)

Article Metrics

Article views(2114) PDF downloads(386) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint