2022 Volume 12 Issue 4
Article Contents

Ruyun Ma, Zhongzi Zhao, Mantang Ma. ON A SUPERLINEAR SECOND ORDER ELLIPTIC PROBLEM AT RESONANCE[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1558-1566. doi: 10.11948/20210356
Citation: Ruyun Ma, Zhongzi Zhao, Mantang Ma. ON A SUPERLINEAR SECOND ORDER ELLIPTIC PROBLEM AT RESONANCE[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1558-1566. doi: 10.11948/20210356

ON A SUPERLINEAR SECOND ORDER ELLIPTIC PROBLEM AT RESONANCE

  • Corresponding author: Email: mary@nwnu.edu.cn(R. Ma) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China(12061064)
  • We show the existence of solutions of the superlinear problem

    $ \begin{equation*} \begin{aligned} &-\Delta u=\lambda_1 u +f(u^+)+h(x),&&{\rm{in}} \ \Omega,\\ &u=0, && {\rm{on}} \ \partial\Omega, \end{aligned} \end{equation*} $

    where $ \Omega\subset \mathbb{R}^N $ be a bounded domain whose boundary is a $ C^{2, \alpha} $ manifold, $ f $ satisfies some superlinear growth conditions and $ h $ satisfies a one-sided Landesman-Lazer condition. A priori bounds for the solutions of the equation is obtained by using Hardy-Sobolev type inequalities. Existence of solutions is then obtained by using topological degree arguments.

    MSC: 35A16, 35B45, 35B34
  • 加载中
  • [1] D. Arcoya and S. Villegas, Nontrivial solutions for a Neumann problem with a nonlinear term asymptotically linear at -∞ and superlinear at +∞, Math. Z., 1995, 219(4), 499–513.

    Google Scholar

    [2] H. Brezis and R. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations, 1977, 2(6), 601–614. doi: 10.1080/03605307708820041

    CrossRef Google Scholar

    [3] M. Cuesta and C. De Coster, Superlinear critical resonant problems with small forcing term, Cal. Var. Partial Differential Equations, 2015, 54(1), 349–363. doi: 10.1007/s00526-014-0788-8

    CrossRef Google Scholar

    [4] M. Cuesta, D. G. De Figueiredo and P. N. Srikanth, On a superlinear elliptic problem at resonance, Calc. Var. Partial Differential Equations, 2003, 17(3), 221–233. doi: 10.1007/s00526-002-0167-8

    CrossRef Google Scholar

    [5] F. O. de Paiva and A. E. Presoto, Semilinear elliptic problems with asymmetric nonlinearities, J. Math. Anal. Appl., 2014, 409(1), 254–262. doi: 10.1016/j.jmaa.2013.06.042

    CrossRef Google Scholar

    [6] F. M. Ferreira and F. O. de Paiva, On a resonant and superlinear elliptic system, Discrete Contin. Dyn. Syst., 2019, 39(10), 5775–5784. doi: 10.3934/dcds.2019253

    CrossRef Google Scholar

    [7] R. Kannan and R. Ortega, Superlinear elliptic boundary value problems, Czech. Math. J., 1987, 37(3), 386–399. doi: 10.21136/CMJ.1987.102166

    CrossRef Google Scholar

    [8] R. Kannan and R. Ortega, Landesman-Lazer conditions for problems with oneside unbounded nonlinearities, Nonlinear. Anal., 1985, 9(12), 1313–1317. doi: 10.1016/0362-546X(85)90090-2

    CrossRef Google Scholar

    [9] S. Kyritsi and N. S. Papageorgiou, Multiple solutions for superlinear Dirichlet problems with an indefinite potential, Annali Math. Pura Appl., 2013, 192(2), 297–315. doi: 10.1007/s10231-011-0224-z

    CrossRef Google Scholar

    [10] D. Motreanu, V. Motreanu and N. S. Papageorgiou, Multiple solutions for Dirichlet problems which are superlinear at +∞ and sublinear at -∞, Commun. Appl. Anal., 2009, 13(3), 341–358.

    Google Scholar

    [11] N. S. Papageorgiou and V. D. Radulescu, Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity, Contemp. Math., 2013, 595, 293–315.

    Google Scholar

    [12] K. Perera, Existence and multiplicity results for a Sturm-Liouville equation asymptotically linear at -∞ and superlinear at +∞, Nonlinear Anal., 2000, 39(6), 669–684. doi: 10.1016/S0362-546X(98)00228-4

    CrossRef Google Scholar

    [13] L. Recova and A. Rumbos, An asymmetric superlinear elliptic problem at resonance, Nonlinear Anal., 2015, 112, 181–198. doi: 10.1016/j.na.2014.09.019

    CrossRef Google Scholar

    [14] J. R. Ward, Perturbations with some superlinear growth for a class of second order elliptic boundary value problems, Nonlinear Anal., 1982, 6(4), 367–374. doi: 10.1016/0362-546X(82)90022-0

    CrossRef Google Scholar

Article Metrics

Article views(2233) PDF downloads(350) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint