2023 Volume 13 Issue 3
Article Contents

Ekin Uğurlu. DISCRETE LEFT-DEFINITE HAMILTONIAN SYSTEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1178-1189. doi: 10.11948/20210387
Citation: Ekin Uğurlu. DISCRETE LEFT-DEFINITE HAMILTONIAN SYSTEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1178-1189. doi: 10.11948/20210387

DISCRETE LEFT-DEFINITE HAMILTONIAN SYSTEMS

  • In this paper we consider an even-dimensional discrete Hamiltonian system on the set of nonnegative integers in the left-definite form. Using the inertia indices of the hermitian form related with the solutions of the equation we construct some maximal subspaces of the solution space. After constructing some ellipsoids preserving nesting properties we introduce a lower bound for the number of Dirichlet-summable solutions of the equation. Moreover we introduce a limit-point criterion.

    MSC: 34B20, 37J06, 70S05
  • 加载中
  • [1] C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations, Kluwer Academic Publishers, Boston, 1996.

    Google Scholar

    [2] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publ. Comp., New York, 1965.

    Google Scholar

    [3] J. M. Berezanskiĭ, Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence, Rhoda Island, 1968.

    Google Scholar

    [4] S. Clark and F. Gesztesy, On Weyl-Titchmarsh theory for singular finite difference Hamiltonian systems, J. Comput. Appl. Math., 2004, 171, 151–184. doi: 10.1016/j.cam.2004.01.011

    CrossRef Google Scholar

    [5] J. J. Dennis and H. S. Wall, The limit-circle case for a positive definite J-fraction, Duke Math. J., 1945, 12, 255–273.

    Google Scholar

    [6] W. N. Everitt, Fourth order singular differential equations, Math. Ann., 1964, 156, 9–24. doi: 10.1007/BF01359977

    CrossRef Google Scholar

    [7] W. N. Everitt, Integrable-square, analytic solutions of odd-order, formally symmetric, ordinary differential equations, Proc. LondonbMath. Soc., 1972, 25(3), 156–182.

    Google Scholar

    [8] E. D. Hellinger and H. S. Wall, Contributions to the analytic theory of continued fractions and infinite matrices, Annals of Math., 1943, 44, 103–127. doi: 10.2307/1969069

    CrossRef Google Scholar

    [9] E. Hellinger, Zur Stieltjesschen Ketten bruchtheorie, Math. Ann., 1922, 86, 18–29. doi: 10.1007/BF01458568

    CrossRef Google Scholar

    [10] D. B. Hinton and J. K. Shaw, Titchmarsh-Weyl theory for Hamiltonian systems, Spectral Theory Diff. Op., North Holland, I. W. Knowles and R. E. Lewis, eds., 1981, 219–230.

    Google Scholar

    [11] D. B. Hinton and J. K. Shaw, On boundary value problems for Hamiltonian systems with two singular points, SIAM J. Math. Anal., 1984, 15, 272–286. doi: 10.1137/0515022

    CrossRef Google Scholar

    [12] D. B. Hinton and J. K. Shaw, On Titchmarsh-Weyl $ M(\lambda)$-functions for linear Hamiltonian systems, J. Differ. Equ., 1981, 40, 316–342. doi: 10.1016/0022-0396(81)90002-4

    CrossRef $ M(\lambda)$-functions for linear Hamiltonian systems" target="_blank">Google Scholar

    [13] T. Kimura and M. Takahasi, Sur les opérataurs differentiels ordinaires linéaires formellement autoadjoints Ⅰ, Funkcialaj Ekvacioj, Serio Internacia, 1965, 7, 35–90.

    Google Scholar

    [14] K. Kodaira, On ordinary differential equations of any even order and the corresponding eigenfunction expansions, Amer. J. Math., 1950, 72, 502–544. doi: 10.2307/2372051

    CrossRef Google Scholar

    [15] A. M. Krall, $ M(\lambda)$ theory for singular Hamiltonian systems with one singular point, SIAM J. Math. Anal., 1989, 20, 664–700. doi: 10.1137/0520047

    CrossRef $ M(\lambda)$ theory for singular Hamiltonian systems with one singular point" target="_blank">Google Scholar

    [16] Y. Liu and Y. Shi, Stability of deficiency indices of Hermitian subspaces under relatively bounded perturbations, Linear and Multilinear Algebra, 2020, DOI: 10.1080/03081087.2020.1760194

    Google Scholar

    [17] R. Ma, C. Gao and Y. Lu, Spectrum theory of second-order difference equations with indefinite weight, J. Spectral Theory, 2018, 8, 971–985. doi: 10.4171/JST/219

    CrossRef Google Scholar

    [18] R. Ma, C. Gao, X. Han and X. Chen, Global structure of positive solutions of a discrete problem with sign-changing weight, Discreet Dynamics in Nature and Society, 2011, 2011, Article ID: 624157.

    Google Scholar

    [19] R. Ma and C. Gao, Spectrum of discrete second-order difference operator with sign-changing weight and its applications, Discreet Dynamics in Nature and Society, 2014, 2014, Article ID: 590968.

    Google Scholar

    [20] A. Pleijel, Some remarks about the limit point and limit circle theory, Ark. för Mat., 1968, 7, 543–550.

    Google Scholar

    [21] A. Pleijel, A survey of spectral theory for pairs of ordinary differential operators, Spectral Theory of Differential Equations, Lecture Notes in Mathematics, Springer, Berlin, 1975, 448.

    Google Scholar

    [22] G. Ren and Y. Shi, Defect indices and definiteness conditions for a class of discrete linear Hamiltonian systems, Appl. Math. Comput., 2011, 218, 3414–3429.

    Google Scholar

    [23] G. Ren and Y. Shi, Self-adjoint extensions for discrete linear Hamiltonian systems, Linear. Algeb. Appl., 2014, 454, 1–48. doi: 10.1016/j.laa.2014.04.016

    CrossRef Google Scholar

    [24] G. Ren, Stability of index for linear relations and its applications, Indagationes Mathematicae, 2018, 29, 657–670. doi: 10.1016/j.indag.2017.11.003

    CrossRef Google Scholar

    [25] P. Sepitka and R. S. Hilscher, Dominant and recessive solutions at infinity and genera of conjoined bases for discrete symplectic systems, J. Diff. Equat. Appl., 2017, 23(4), 657–698. doi: 10.1080/10236198.2016.1270274

    CrossRef Google Scholar

    [26] Y. Shi, Weyl-Titchmarsh theory for a class of discrete linear Hamiltonian systems, Linear Algeb. Appl., 2006, 416, 452–519. doi: 10.1016/j.laa.2005.11.025

    CrossRef Google Scholar

    [27] Y. Shi and H. Sun, Self-adjoint extensions for second-order symmetric linear difference equations, Linear Alg. Appl., 2011, 434, 903–930. doi: 10.1016/j.laa.2010.10.003

    CrossRef Google Scholar

    [28] Y. Shi, G. Xu and G. Ren, Boundedness and closedness of linear relations, Linear and Multilinear Algebra, 2018, 66, 309–333. doi: 10.1080/03081087.2017.1298080

    CrossRef Google Scholar

    [29] G. Shi and R. Yan, Spectral theory of left definite difference operators, J. Math. Anal. Appl., 2008, 337, 116–122. doi: 10.1016/j.jmaa.2007.03.092

    CrossRef Google Scholar

    [30] H. Sun and Y. Shi, Spectral properties of singular discrete linear Hamiltonian systems, J. Differ. Equs Appl., 2014, 20, 379–405. doi: 10.1080/10236198.2013.824432

    CrossRef Google Scholar

    [31] H. Sun and Y. Shi, On essential spectra of singular linear Hamiltonian systems, Linear Algeb. Appl., 2015, 469, 204–229. doi: 10.1016/j.laa.2014.11.030

    CrossRef Google Scholar

    [32] H. S. Wall and M. Wetzel, Contributions to the analytic theory of J-fractions, Trans. Amer: Math. Soc., 1944, 55, 373–392.

    Google Scholar

    [33] H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann., 1910, 68, 220–269. doi: 10.1007/BF01474161

    CrossRef Google Scholar

    [34] H. Weyl, Über gewöhnliche lineare differentialgleichwgen mit singulären stellen und ihne eigenfunktionen (2. note), Gött. Nachr., 29 (1910), 442-467.

    Google Scholar

Article Metrics

Article views(1719) PDF downloads(305) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint