Citation: | Ekin Uğurlu. DISCRETE LEFT-DEFINITE HAMILTONIAN SYSTEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1178-1189. doi: 10.11948/20210387 |
In this paper we consider an even-dimensional discrete Hamiltonian system on the set of nonnegative integers in the left-definite form. Using the inertia indices of the hermitian form related with the solutions of the equation we construct some maximal subspaces of the solution space. After constructing some ellipsoids preserving nesting properties we introduce a lower bound for the number of Dirichlet-summable solutions of the equation. Moreover we introduce a limit-point criterion.
[1] | C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations, Kluwer Academic Publishers, Boston, 1996. |
[2] | N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publ. Comp., New York, 1965. |
[3] | J. M. Berezanskiĭ, Expansions in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence, Rhoda Island, 1968. |
[4] | S. Clark and F. Gesztesy, On Weyl-Titchmarsh theory for singular finite difference Hamiltonian systems, J. Comput. Appl. Math., 2004, 171, 151–184. doi: 10.1016/j.cam.2004.01.011 |
[5] | J. J. Dennis and H. S. Wall, The limit-circle case for a positive definite J-fraction, Duke Math. J., 1945, 12, 255–273. |
[6] | W. N. Everitt, Fourth order singular differential equations, Math. Ann., 1964, 156, 9–24. doi: 10.1007/BF01359977 |
[7] | W. N. Everitt, Integrable-square, analytic solutions of odd-order, formally symmetric, ordinary differential equations, Proc. LondonbMath. Soc., 1972, 25(3), 156–182. |
[8] | E. D. Hellinger and H. S. Wall, Contributions to the analytic theory of continued fractions and infinite matrices, Annals of Math., 1943, 44, 103–127. doi: 10.2307/1969069 |
[9] | E. Hellinger, Zur Stieltjesschen Ketten bruchtheorie, Math. Ann., 1922, 86, 18–29. doi: 10.1007/BF01458568 |
[10] | D. B. Hinton and J. K. Shaw, Titchmarsh-Weyl theory for Hamiltonian systems, Spectral Theory Diff. Op., North Holland, I. W. Knowles and R. E. Lewis, eds., 1981, 219–230. |
[11] | D. B. Hinton and J. K. Shaw, On boundary value problems for Hamiltonian systems with two singular points, SIAM J. Math. Anal., 1984, 15, 272–286. doi: 10.1137/0515022 |
[12] |
D. B. Hinton and J. K. Shaw, On Titchmarsh-Weyl $ M(\lambda)$-functions for linear Hamiltonian systems, J. Differ. Equ., 1981, 40, 316–342. doi: 10.1016/0022-0396(81)90002-4
CrossRef $ M(\lambda)$-functions for linear Hamiltonian systems" target="_blank">Google Scholar |
[13] | T. Kimura and M. Takahasi, Sur les opérataurs differentiels ordinaires linéaires formellement autoadjoints Ⅰ, Funkcialaj Ekvacioj, Serio Internacia, 1965, 7, 35–90. |
[14] | K. Kodaira, On ordinary differential equations of any even order and the corresponding eigenfunction expansions, Amer. J. Math., 1950, 72, 502–544. doi: 10.2307/2372051 |
[15] |
A. M. Krall, $ M(\lambda)$ theory for singular Hamiltonian systems with one singular point, SIAM J. Math. Anal., 1989, 20, 664–700. doi: 10.1137/0520047
CrossRef $ M(\lambda)$ theory for singular Hamiltonian systems with one singular point" target="_blank">Google Scholar |
[16] |
Y. Liu and Y. Shi, Stability of deficiency indices of Hermitian subspaces under relatively bounded perturbations, Linear and Multilinear Algebra, 2020, DOI: |
[17] | R. Ma, C. Gao and Y. Lu, Spectrum theory of second-order difference equations with indefinite weight, J. Spectral Theory, 2018, 8, 971–985. doi: 10.4171/JST/219 |
[18] | R. Ma, C. Gao, X. Han and X. Chen, Global structure of positive solutions of a discrete problem with sign-changing weight, Discreet Dynamics in Nature and Society, 2011, 2011, Article ID: 624157. |
[19] | R. Ma and C. Gao, Spectrum of discrete second-order difference operator with sign-changing weight and its applications, Discreet Dynamics in Nature and Society, 2014, 2014, Article ID: 590968. |
[20] | A. Pleijel, Some remarks about the limit point and limit circle theory, Ark. för Mat., 1968, 7, 543–550. |
[21] | A. Pleijel, A survey of spectral theory for pairs of ordinary differential operators, Spectral Theory of Differential Equations, Lecture Notes in Mathematics, Springer, Berlin, 1975, 448. |
[22] | G. Ren and Y. Shi, Defect indices and definiteness conditions for a class of discrete linear Hamiltonian systems, Appl. Math. Comput., 2011, 218, 3414–3429. |
[23] | G. Ren and Y. Shi, Self-adjoint extensions for discrete linear Hamiltonian systems, Linear. Algeb. Appl., 2014, 454, 1–48. doi: 10.1016/j.laa.2014.04.016 |
[24] | G. Ren, Stability of index for linear relations and its applications, Indagationes Mathematicae, 2018, 29, 657–670. doi: 10.1016/j.indag.2017.11.003 |
[25] | P. Sepitka and R. S. Hilscher, Dominant and recessive solutions at infinity and genera of conjoined bases for discrete symplectic systems, J. Diff. Equat. Appl., 2017, 23(4), 657–698. doi: 10.1080/10236198.2016.1270274 |
[26] | Y. Shi, Weyl-Titchmarsh theory for a class of discrete linear Hamiltonian systems, Linear Algeb. Appl., 2006, 416, 452–519. doi: 10.1016/j.laa.2005.11.025 |
[27] | Y. Shi and H. Sun, Self-adjoint extensions for second-order symmetric linear difference equations, Linear Alg. Appl., 2011, 434, 903–930. doi: 10.1016/j.laa.2010.10.003 |
[28] | Y. Shi, G. Xu and G. Ren, Boundedness and closedness of linear relations, Linear and Multilinear Algebra, 2018, 66, 309–333. doi: 10.1080/03081087.2017.1298080 |
[29] | G. Shi and R. Yan, Spectral theory of left definite difference operators, J. Math. Anal. Appl., 2008, 337, 116–122. doi: 10.1016/j.jmaa.2007.03.092 |
[30] | H. Sun and Y. Shi, Spectral properties of singular discrete linear Hamiltonian systems, J. Differ. Equs Appl., 2014, 20, 379–405. doi: 10.1080/10236198.2013.824432 |
[31] | H. Sun and Y. Shi, On essential spectra of singular linear Hamiltonian systems, Linear Algeb. Appl., 2015, 469, 204–229. doi: 10.1016/j.laa.2014.11.030 |
[32] | H. S. Wall and M. Wetzel, Contributions to the analytic theory of J-fractions, Trans. Amer: Math. Soc., 1944, 55, 373–392. |
[33] | H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann., 1910, 68, 220–269. doi: 10.1007/BF01474161 |
[34] | H. Weyl, Über gewöhnliche lineare differentialgleichwgen mit singulären stellen und ihne eigenfunktionen (2. note), Gött. Nachr., 29 (1910), 442-467. |