2023 Volume 13 Issue 3
Article Contents

Xiongmei Fan, Sen Ming, Wei Han, Yeqin Su. BLOW-UP OF SOLUTIONS TO THE SEMILINEAR WAVE EQUATIONS WITH FRICTIONAL AND VISCOELASTIC DAMPING TERMS[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1190-1208. doi: 10.11948/20210427
Citation: Xiongmei Fan, Sen Ming, Wei Han, Yeqin Su. BLOW-UP OF SOLUTIONS TO THE SEMILINEAR WAVE EQUATIONS WITH FRICTIONAL AND VISCOELASTIC DAMPING TERMS[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1190-1208. doi: 10.11948/20210427

BLOW-UP OF SOLUTIONS TO THE SEMILINEAR WAVE EQUATIONS WITH FRICTIONAL AND VISCOELASTIC DAMPING TERMS

  • Author Bio: Email: xiongmeifan1997@163.com (X. Fan); Email: hanwei@nuc.edu.cn (W. Han); Email: suyeqin2008@163.com (Y. Su)
  • Corresponding author: Email: senming1987@163.com (S. Ming) 
  • Fund Project: The authors were supported by Natural Science Foundation of Shanxi Province of China (201901D211276), the Fundamental Research Program of Shanxi Province (20210302123021, 20210302123045, 20210302123182), the Program for the Innovative Talents of Higher Education Institutions of Shanxi Province, the Innovative Research Team of North University of China (TD201901), National Natural Science Foundation of China (11601446)
  • Our starting point in this paper is to investigate the weakly coupled system of semilinear wave equations with two types of damping terms and combined nonlinearities $|v_{t}|^{p_{1}}+|v|^{q_{1}}$, $|u_{t}|^{p_{2}}+|u|^{q_{2}}$ on exterior domain in $n\, (n\geq1)$ dimensions. Local existence and uniqueness of mild solutions to the problem are established. Moreover, non-existence of global solutions to the problem with power nonlinearities $|v|^{p}, \, |u|^{q}$ in the case of coupled system and the problem with power nonlinearity $|u|^{p}$ in the case of single equation are verified. The proofs are based on the test function technique. It is worth noticing that the frictional damping $u_{t}$ is more dominant than the viscoelastic damping $\Delta u_{t}$ when the time trend to infinity. To the best of our knowledge, the blow-up results in Theorems 1.2-1.3 are new.

    MSC: 35L70, 58J45
  • 加载中
  • [1] W. Chen and T. Dao, Lifespan estimates for the weakly coupled system of semilinear damped wave equations in the critical case, 2020. Arxiv: 2011.11366v1.

    Google Scholar

    [2] W. Chen and A. Z. Fino, Blow-up of solutions to semilinear strongly damped wave equations with different nonlinear terms in an exterior domain, Math. Methods Appl. Sci., 2021, 44, 6787–6807. doi: 10.1002/mma.7223

    CrossRef Google Scholar

    [3] W. Chen and M. Reissig, Blow-up of solutions to Nakao's problem via an iteration argument, J. Differential Equations, 2021, 275, 733–756. doi: 10.1016/j.jde.2020.11.009

    CrossRef Google Scholar

    [4] M. D'Abbicco, $L^{1}-L^{1}$ estimates for a doubly dissipative semilinear wave equation, NoDEA Nonlinear Differential Equations Appl., 2017, 24(5), 2307–2336.

    $L^{1}-L^{1}$ estimates for a doubly dissipative semilinear wave equation" target="_blank">Google Scholar

    [5] M. D'Abbicco, H. Takeda and R. Ikehata, Critical exponent for semilinear wave equations with double damping terms in exterior domains, NoDEA Nonlinear Differential Equations Appl., 2019. DOI: 10.1007/s00030-019-0603-5.

    CrossRef Google Scholar

    [6] W. Dai, D. Fang and C. Wang, Global existence and lifespan for semilinear wave equations with mixed nonlinear terms, J. Differential Equations, 2019, 267, 3328–3354. doi: 10.1016/j.jde.2019.04.007

    CrossRef Google Scholar

    [7] T. Dao, Existence and non-existence of global solutions for a structurally damped wave system with power nonlinearities, 2019. Arxiv: 1911.04412v1.

    Google Scholar

    [8] T. Dao, A result for non-existence of global solutuons to semilinear structural damped wave model, 2019. Arxiv: 1912.07066v1.

    Google Scholar

    [9] T. Dao and A. Z. Fino, Critical exponent for semilinear structurally damped wave equation of derivative type, Math. Methods Appl. Sci., 2020. DOI: 10.1002/mma.6649.

    CrossRef Google Scholar

    [10] A. Z. Fino, Finite time blow-up for wave equations with strong damping in an exterior domain, Mediterr. J. Math., 2020. Http://DOI.org/10.1007/s00009-020-01607-2 1660-5446/20/060001-21. doi: 10.1007/s00009-020-01607-21660-5446/20/060001-21

    CrossRef Google Scholar

    [11] V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., 1997, 119, 1291–1319. doi: 10.1353/ajm.1997.0038

    CrossRef Google Scholar

    [12] M. Hamouda and M. A. Hamza, New blow-up result for the weakly coupled wave equations with a scale invariant damping and time derivative nonlinearity, 2020. Arxiv: 2008.06569v1.

    Google Scholar

    [13] W. Han and Y. Zhou, Blow-up for some semilinear wave equations in multispace dimensions, Comm. Partial Differential Equations, 2014, 39, 651–665. doi: 10.1080/03605302.2013.863916

    CrossRef Google Scholar

    [14] K. Hidano, C. Wang and K. Yokoyama, The Glassey conjecture with radially symmetric data, J. Math. Pures Appl., 2012, 98(5), 518–541. doi: 10.1016/j.matpur.2012.01.007

    CrossRef Google Scholar

    [15] K. Hidano, C. Wang and K. Yokoyama, Combined effects of two nonlinearities in lifespan of small solutions to semilinear wave equations, Math. Ann., 2016, 366, 667–694. doi: 10.1007/s00208-015-1346-1

    CrossRef Google Scholar

    [16] K. Hidano and K. Yokoyama, Global existence and blow-up for systems of nonlinear wave equations related to the weak null condition, Discrete Contin. Dyn. Syst., 2022. Arxiv: 2103.07650v1.

    Google Scholar

    [17] M. Ikeda, M. Sobajima and K. Wakasa, Blow-up phenomena of semilinear wave equations and their weakly couples system, J. Differential Equations, 2019, 267(9), 5165–5201. doi: 10.1016/j.jde.2019.05.029

    CrossRef Google Scholar

    [18] M. Ikeda, T. Tanaka and K. Wakasa, Critical exponent for the wave equation with a time dependent scale invariant damping and a cubic convolution, J. Differential Equations, 2021, 270, 916–946. doi: 10.1016/j.jde.2020.08.047

    CrossRef Google Scholar

    [19] R. Ikehata, Asymptotic profiles for wave equations with strong damping, J. Differential Equations, 2014, 257, 2159–2177. doi: 10.1016/j.jde.2014.05.031

    CrossRef Google Scholar

    [20] R. Ikehata and S. Kitazaki, Optimal energy decay rates for some wave equations with double damping terms, Evol. Equ. Control Theory, 2019, 8, 825–846. doi: 10.3934/eect.2019040

    CrossRef Google Scholar

    [21] R. Ikehata and A. Sawada, Asymptotic profile of solutions for wave equations with frictional and viscoelastic damping terms, Asymptot. Anal., 2016, 98, 59–77.

    Google Scholar

    [22] R. Ikehata and H. Takeda, Critical exponent for nonlinear wave equations with frictional and viscoelastic damping terms, Nonlinear Anal., 2017, 148, 228–253. doi: 10.1016/j.na.2016.10.008

    CrossRef Google Scholar

    [23] T. Imai, M. Kato, H. Takamura and K. Wakasa, The lifespan of solutions of semilinear wave equations with the scale invariant damping in two space dimensions, J. Differential Equations, 2020, 269, 8387–8424. doi: 10.1016/j.jde.2020.06.019

    CrossRef Google Scholar

    [24] M. Jleli, B. Samet and C. Vetro, A general non-existence result for inhomogeneous semilinear wave equations with double damping and potential terms, Chaos Solitons Fractals, 2021, 144, 110673. doi: 10.1016/j.chaos.2021.110673

    CrossRef Google Scholar

    [25] N. Lai, M. Liu, Z. Tu and C. Wang, Lifespan estimates for semilinear wave equations with sapce dependent damping and potential, 2021. Arxiv: 2102.10257v1.

    Google Scholar

    [26] N. Lai, M. Liu, K. Wakasa and C. Wang, Lifespan estimates for 2 dimensional semilinear wave equations in asymptotically Euclidean exterior domains, J. Funct. Anal., 2021, 281, 109253. doi: 10.1016/j.jfa.2021.109253

    CrossRef Google Scholar

    [27] N. Lai and H. Takamura, Non-existence of global solutions of wave equations with weak time dependent damping and combined nonlinearity, Nonlinear Anal. Real World Appl., 2019, 45, 83–96. doi: 10.1016/j.nonrwa.2018.06.008

    CrossRef Google Scholar

    [28] N. Lai and Z. Tu, Strauss exponent for semilinear wave equations with scsttering space dependent damping, J. Math. Anal. Appl., 2020, 489, 124189. doi: 10.1016/j.jmaa.2020.124189

    CrossRef Google Scholar

    [29] N. Lai and Y. Zhou, An elementary proof of Strauss conjecture, J. Funct. Anal., 2014, 267(5), 1364–1381. doi: 10.1016/j.jfa.2014.05.020

    CrossRef Google Scholar

    [30] N. Lai and Y. Zhou, Global existence for semilinear wave equation with scaling invariant damping in 3 D, Nonlinear Anal., 2021, 210, 112392. doi: 10.1016/j.na.2021.112392

    CrossRef Google Scholar

    [31] Q. Lei and H. Yang, Global existence and blow-up for semilinear wave equations with variable coefficient, Chinese Ann. Math. Ser. B, 2018, 39(4), 643–664. doi: 10.1007/s11401-018-0087-3

    CrossRef Google Scholar

    [32] Y. Lin, N. Lai and S. Ming, Lifespan estimate for semilinear wave equation in Schwarzschild spacetime, Appl. Math. Lett., 2020, 99, 105997. doi: 10.1016/j.aml.2019.105997

    CrossRef Google Scholar

    [33] M. Liu and C. Wang, Blow-up for small amplitude semilinear wave equations with mixed nonlinearities on asymptotically Euclidean manifolds, J. Differential Equations, 2020, 269, 8573–8596. doi: 10.1016/j.jde.2020.06.032

    CrossRef Google Scholar

    [34] S. Ming, S. Lai and X. Fan, Lifespan estimates of solutions to quasilinear wave equations with scattering damping, J. Math. Anal. Appl., 2020, 492, 124441. doi: 10.1016/j.jmaa.2020.124441

    CrossRef Google Scholar

    [35] S. Ming, S. Lai and X. Fan, Blow-up for a coupled system of semilinear wave equations with scattering dampings and combined nonlinearities, Appl. Anal., 2022, 101, 2996–3016. doi: 10.1080/00036811.2020.1834086

    CrossRef Google Scholar

    [36] S. Ming, H. Yang and X. Fan, Blow-up and lifespan estimates of solutions to the weakly coupled system of semilinear Moore-Gibson-Thompson equations, Math. Methods Appl. Sci., 2021, 44, 10972–10992. doi: 10.1002/mma.7462

    CrossRef Google Scholar

    [37] S. Ming, H. Yang and X. Fan, Formation of singularities of solutions to the Cauchy problem for semilinear Moore-Gibson-Thompson equations, Commun. Pure Appl. Anal., 2022, 21, 1773–1792. doi: 10.3934/cpaa.2022046

    CrossRef Google Scholar

    [38] S. Ming, H. Yang, X. Fan and J. Yao, Blow-up and lifespan estimates of solutions to semilinear Moore-Gibson-Thompson equations, Nonlinear Anal. Real World Appl., 2021, 62, 103360. doi: 10.1016/j.nonrwa.2021.103360

    CrossRef Google Scholar

    [39] E. Mitidieri and S. I. Pohozaev, Non-existence of weak solutions for some degenerate elliptic and parabolic problems on $\mathbb{R}^{n}$, J. Evol. Equ., 2001, 1, 189–220. doi: 10.1007/PL00001368

    CrossRef $\mathbb{R}^{n}$" target="_blank">Google Scholar

    [40] A. Palmieri and H. Takamura, Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities, Nonlinear Anal., 2019, 187, 467–492. doi: 10.1016/j.na.2019.06.016

    CrossRef Google Scholar

    [41] A. Palmieri and H. Takamura, Non-existence of global solutions for a weakly coupled system of semilinear damped wave equations in the scattering case with mixed nonlinear terms, NoDEA Nonlinear Differential Equations Appl., 2020. DOI: 10.1007/s00030-020-00662-8.

    CrossRef Google Scholar

    [42] B. Yordanov and Q. Zhang, Finite time blow-up for critical wave equations in high dimensions, J. Funct. Anal., 2006, 231, 361–374. doi: 10.1016/j.jfa.2005.03.012

    CrossRef Google Scholar

    [43] D. Zha and F. Wang, On initial boundary value problems for one dimension semilinear wave equations with null conditions, J. Differential Equations, 2021, 275, 638–651. doi: 10.1016/j.jde.2020.11.022

    CrossRef Google Scholar

    [44] Y. Zhou, Blow-up of solutions to the Cauchy problem for nonlinear wave equations, Chinese Ann. Math. Ser. B, 2001, 22(3), 275–280. doi: 10.1142/S0252959901000280

    CrossRef Google Scholar

    [45] Y. Zhou, Blow-up of solutions to semilinear wave equations with critical exponent in high dimensions, Chinese Ann. Math. Ser. B, 2007, 28, 205–212. doi: 10.1007/s11401-005-0205-x

    CrossRef Google Scholar

    [46] Y. Zhou and W. Han, Lifespan of solutions to critical semilinear wave equations, Comm. Partial Differential Equations, 2014, 39(3), 439–451. doi: 10.1080/03605302.2013.863914

    CrossRef Google Scholar

Article Metrics

Article views(2043) PDF downloads(444) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint