Citation: | Xiongmei Fan, Sen Ming, Wei Han, Yeqin Su. BLOW-UP OF SOLUTIONS TO THE SEMILINEAR WAVE EQUATIONS WITH FRICTIONAL AND VISCOELASTIC DAMPING TERMS[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1190-1208. doi: 10.11948/20210427 |
Our starting point in this paper is to investigate the weakly coupled system of semilinear wave equations with two types of damping terms and combined nonlinearities $|v_{t}|^{p_{1}}+|v|^{q_{1}}$, $|u_{t}|^{p_{2}}+|u|^{q_{2}}$ on exterior domain in $n\, (n\geq1)$ dimensions. Local existence and uniqueness of mild solutions to the problem are established. Moreover, non-existence of global solutions to the problem with power nonlinearities $|v|^{p}, \, |u|^{q}$ in the case of coupled system and the problem with power nonlinearity $|u|^{p}$ in the case of single equation are verified. The proofs are based on the test function technique. It is worth noticing that the frictional damping $u_{t}$ is more dominant than the viscoelastic damping $\Delta u_{t}$ when the time trend to infinity. To the best of our knowledge, the blow-up results in Theorems 1.2-1.3 are new.
[1] | W. Chen and T. Dao, Lifespan estimates for the weakly coupled system of semilinear damped wave equations in the critical case, 2020. Arxiv: 2011.11366v1. |
[2] | W. Chen and A. Z. Fino, Blow-up of solutions to semilinear strongly damped wave equations with different nonlinear terms in an exterior domain, Math. Methods Appl. Sci., 2021, 44, 6787–6807. doi: 10.1002/mma.7223 |
[3] | W. Chen and M. Reissig, Blow-up of solutions to Nakao's problem via an iteration argument, J. Differential Equations, 2021, 275, 733–756. doi: 10.1016/j.jde.2020.11.009 |
[4] | M. D'Abbicco, $L^{1}-L^{1}$ estimates for a doubly dissipative semilinear wave equation, NoDEA Nonlinear Differential Equations Appl., 2017, 24(5), 2307–2336. |
[5] | M. D'Abbicco, H. Takeda and R. Ikehata, Critical exponent for semilinear wave equations with double damping terms in exterior domains, NoDEA Nonlinear Differential Equations Appl., 2019. DOI: 10.1007/s00030-019-0603-5. |
[6] | W. Dai, D. Fang and C. Wang, Global existence and lifespan for semilinear wave equations with mixed nonlinear terms, J. Differential Equations, 2019, 267, 3328–3354. doi: 10.1016/j.jde.2019.04.007 |
[7] | T. Dao, Existence and non-existence of global solutions for a structurally damped wave system with power nonlinearities, 2019. Arxiv: 1911.04412v1. |
[8] | T. Dao, A result for non-existence of global solutuons to semilinear structural damped wave model, 2019. Arxiv: 1912.07066v1. |
[9] | T. Dao and A. Z. Fino, Critical exponent for semilinear structurally damped wave equation of derivative type, Math. Methods Appl. Sci., 2020. DOI: 10.1002/mma.6649. |
[10] | A. Z. Fino, Finite time blow-up for wave equations with strong damping in an exterior domain, Mediterr. J. Math., 2020. Http://DOI.org/10.1007/s00009-020-01607-2 1660-5446/20/060001-21. doi: 10.1007/s00009-020-01607-21660-5446/20/060001-21 |
[11] | V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., 1997, 119, 1291–1319. doi: 10.1353/ajm.1997.0038 |
[12] | M. Hamouda and M. A. Hamza, New blow-up result for the weakly coupled wave equations with a scale invariant damping and time derivative nonlinearity, 2020. Arxiv: 2008.06569v1. |
[13] | W. Han and Y. Zhou, Blow-up for some semilinear wave equations in multispace dimensions, Comm. Partial Differential Equations, 2014, 39, 651–665. doi: 10.1080/03605302.2013.863916 |
[14] | K. Hidano, C. Wang and K. Yokoyama, The Glassey conjecture with radially symmetric data, J. Math. Pures Appl., 2012, 98(5), 518–541. doi: 10.1016/j.matpur.2012.01.007 |
[15] | K. Hidano, C. Wang and K. Yokoyama, Combined effects of two nonlinearities in lifespan of small solutions to semilinear wave equations, Math. Ann., 2016, 366, 667–694. doi: 10.1007/s00208-015-1346-1 |
[16] | K. Hidano and K. Yokoyama, Global existence and blow-up for systems of nonlinear wave equations related to the weak null condition, Discrete Contin. Dyn. Syst., 2022. Arxiv: 2103.07650v1. |
[17] | M. Ikeda, M. Sobajima and K. Wakasa, Blow-up phenomena of semilinear wave equations and their weakly couples system, J. Differential Equations, 2019, 267(9), 5165–5201. doi: 10.1016/j.jde.2019.05.029 |
[18] | M. Ikeda, T. Tanaka and K. Wakasa, Critical exponent for the wave equation with a time dependent scale invariant damping and a cubic convolution, J. Differential Equations, 2021, 270, 916–946. doi: 10.1016/j.jde.2020.08.047 |
[19] | R. Ikehata, Asymptotic profiles for wave equations with strong damping, J. Differential Equations, 2014, 257, 2159–2177. doi: 10.1016/j.jde.2014.05.031 |
[20] | R. Ikehata and S. Kitazaki, Optimal energy decay rates for some wave equations with double damping terms, Evol. Equ. Control Theory, 2019, 8, 825–846. doi: 10.3934/eect.2019040 |
[21] | R. Ikehata and A. Sawada, Asymptotic profile of solutions for wave equations with frictional and viscoelastic damping terms, Asymptot. Anal., 2016, 98, 59–77. |
[22] | R. Ikehata and H. Takeda, Critical exponent for nonlinear wave equations with frictional and viscoelastic damping terms, Nonlinear Anal., 2017, 148, 228–253. doi: 10.1016/j.na.2016.10.008 |
[23] | T. Imai, M. Kato, H. Takamura and K. Wakasa, The lifespan of solutions of semilinear wave equations with the scale invariant damping in two space dimensions, J. Differential Equations, 2020, 269, 8387–8424. doi: 10.1016/j.jde.2020.06.019 |
[24] | M. Jleli, B. Samet and C. Vetro, A general non-existence result for inhomogeneous semilinear wave equations with double damping and potential terms, Chaos Solitons Fractals, 2021, 144, 110673. doi: 10.1016/j.chaos.2021.110673 |
[25] | N. Lai, M. Liu, Z. Tu and C. Wang, Lifespan estimates for semilinear wave equations with sapce dependent damping and potential, 2021. Arxiv: 2102.10257v1. |
[26] | N. Lai, M. Liu, K. Wakasa and C. Wang, Lifespan estimates for 2 dimensional semilinear wave equations in asymptotically Euclidean exterior domains, J. Funct. Anal., 2021, 281, 109253. doi: 10.1016/j.jfa.2021.109253 |
[27] | N. Lai and H. Takamura, Non-existence of global solutions of wave equations with weak time dependent damping and combined nonlinearity, Nonlinear Anal. Real World Appl., 2019, 45, 83–96. doi: 10.1016/j.nonrwa.2018.06.008 |
[28] | N. Lai and Z. Tu, Strauss exponent for semilinear wave equations with scsttering space dependent damping, J. Math. Anal. Appl., 2020, 489, 124189. doi: 10.1016/j.jmaa.2020.124189 |
[29] | N. Lai and Y. Zhou, An elementary proof of Strauss conjecture, J. Funct. Anal., 2014, 267(5), 1364–1381. doi: 10.1016/j.jfa.2014.05.020 |
[30] | N. Lai and Y. Zhou, Global existence for semilinear wave equation with scaling invariant damping in 3 D, Nonlinear Anal., 2021, 210, 112392. doi: 10.1016/j.na.2021.112392 |
[31] | Q. Lei and H. Yang, Global existence and blow-up for semilinear wave equations with variable coefficient, Chinese Ann. Math. Ser. B, 2018, 39(4), 643–664. doi: 10.1007/s11401-018-0087-3 |
[32] | Y. Lin, N. Lai and S. Ming, Lifespan estimate for semilinear wave equation in Schwarzschild spacetime, Appl. Math. Lett., 2020, 99, 105997. doi: 10.1016/j.aml.2019.105997 |
[33] | M. Liu and C. Wang, Blow-up for small amplitude semilinear wave equations with mixed nonlinearities on asymptotically Euclidean manifolds, J. Differential Equations, 2020, 269, 8573–8596. doi: 10.1016/j.jde.2020.06.032 |
[34] | S. Ming, S. Lai and X. Fan, Lifespan estimates of solutions to quasilinear wave equations with scattering damping, J. Math. Anal. Appl., 2020, 492, 124441. doi: 10.1016/j.jmaa.2020.124441 |
[35] | S. Ming, S. Lai and X. Fan, Blow-up for a coupled system of semilinear wave equations with scattering dampings and combined nonlinearities, Appl. Anal., 2022, 101, 2996–3016. doi: 10.1080/00036811.2020.1834086 |
[36] | S. Ming, H. Yang and X. Fan, Blow-up and lifespan estimates of solutions to the weakly coupled system of semilinear Moore-Gibson-Thompson equations, Math. Methods Appl. Sci., 2021, 44, 10972–10992. doi: 10.1002/mma.7462 |
[37] | S. Ming, H. Yang and X. Fan, Formation of singularities of solutions to the Cauchy problem for semilinear Moore-Gibson-Thompson equations, Commun. Pure Appl. Anal., 2022, 21, 1773–1792. doi: 10.3934/cpaa.2022046 |
[38] | S. Ming, H. Yang, X. Fan and J. Yao, Blow-up and lifespan estimates of solutions to semilinear Moore-Gibson-Thompson equations, Nonlinear Anal. Real World Appl., 2021, 62, 103360. doi: 10.1016/j.nonrwa.2021.103360 |
[39] | E. Mitidieri and S. I. Pohozaev, Non-existence of weak solutions for some degenerate elliptic and parabolic problems on $\mathbb{R}^{n}$, J. Evol. Equ., 2001, 1, 189–220. doi: 10.1007/PL00001368 |
[40] | A. Palmieri and H. Takamura, Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities, Nonlinear Anal., 2019, 187, 467–492. doi: 10.1016/j.na.2019.06.016 |
[41] | A. Palmieri and H. Takamura, Non-existence of global solutions for a weakly coupled system of semilinear damped wave equations in the scattering case with mixed nonlinear terms, NoDEA Nonlinear Differential Equations Appl., 2020. DOI: 10.1007/s00030-020-00662-8. |
[42] | B. Yordanov and Q. Zhang, Finite time blow-up for critical wave equations in high dimensions, J. Funct. Anal., 2006, 231, 361–374. doi: 10.1016/j.jfa.2005.03.012 |
[43] | D. Zha and F. Wang, On initial boundary value problems for one dimension semilinear wave equations with null conditions, J. Differential Equations, 2021, 275, 638–651. doi: 10.1016/j.jde.2020.11.022 |
[44] | Y. Zhou, Blow-up of solutions to the Cauchy problem for nonlinear wave equations, Chinese Ann. Math. Ser. B, 2001, 22(3), 275–280. doi: 10.1142/S0252959901000280 |
[45] | Y. Zhou, Blow-up of solutions to semilinear wave equations with critical exponent in high dimensions, Chinese Ann. Math. Ser. B, 2007, 28, 205–212. doi: 10.1007/s11401-005-0205-x |
[46] | Y. Zhou and W. Han, Lifespan of solutions to critical semilinear wave equations, Comm. Partial Differential Equations, 2014, 39(3), 439–451. doi: 10.1080/03605302.2013.863914 |