Citation: | Lan-Dan Deng, Yan-Ying Shang. THE GROUND STATE SOLUTIONS FOR CRITICAL FRACTIONAL PROBLEMS WITH STEEP POTENTIAL WELL[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 644-654. doi: 10.11948/20210405 |
In this paper we investigate the existence of ground state solutions for a class of critical fractional problems. Under suitable assumptions of nonlinear terms and parameters, we get the existence of the ground states solutions.
[1] |
C. Alves and M. Souto, Existence of solution for a class of problem in whole $\mathbb{R^{N}}$ without the Ambrosetti-Rabinowitz condition, manuscripta math., 2021, 165, 453–468. doi: 10.1007/s00229-020-01231-0
CrossRef $\mathbb{R^{N}}$ without the Ambrosetti-Rabinowitz condition" target="_blank">Google Scholar |
[2] | C. O. Alves, M. A. S. Souto and M. Montenegro, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. Partial Differential Equations, 2012, 43, 537–554. doi: 10.1007/s00526-011-0422-y |
[3] | D. Albuquerque, C. Josė, F. D. Silva and D. Edcarlos, Ground states for fractional linear coupled systems via profile decomposition, Nonlinearity, 2021, 34, 4787–4818. doi: 10.1088/1361-6544/abf84c |
[4] |
T. Bartsch and Z. Tang, Multibump solutions of nonlinear Schr$\ddot{o}$dinger equations with steep potential well and indefinite potential, Discrete Contin. Dyn. Syst., 2013, 33, 7–26. doi: 10.3934/dcds.2013.33.7
CrossRef $\ddot{o}$dinger equations with steep potential well and indefinite potential" target="_blank">Google Scholar |
[5] | T. Bartsch and Z. Wang, Existence and multiplicity results for superlinear elliptic problems on $\mathbb R^{n}$, Comm. Partial Differential Equations, 1995, 20, 1725–1741. doi: 10.1080/03605309508821149 |
[6] | T. Bartsch and Z. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys., 2000, 51, 366–384. doi: 10.1007/PL00001511 |
[7] |
M. Clapp and Y. Ding, Positive solutions of a Schr$\ddot{o}$dinger equation with critical nonlinearity, Z. Angew. Math. Phys., 2004, 55, 592–605. doi: 10.1007/s00033-004-1084-9
CrossRef $\ddot{o}$dinger equation with critical nonlinearity" target="_blank">Google Scholar |
[8] | X. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equation, J. Math. Phys., 2013, 54. |
[9] | J. M. Do and D. Ferraz, Concentration-compactness for singular nonlocal Schrödinger equations with oscillatory nonlinearities, Topol. Methods Nonlinear Anal., 2018, 52, 372–421. |
[10] | D. N. Eleonora, P. Giampiero and V. Enrico, Hitchhiker¡¯s guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136, 521–573. doi: 10.1016/j.bulsci.2011.12.004 |
[11] | P. Felmer, A. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. R. Soc. Edinb. A., 2012, 142, 1237–1262. doi: 10.1017/S0308210511000746 |
[12] | X. Fang and Z. Han, Ground state solution and multiple solutions to asymptotically linear Schrödinger equations, J. Boundary Value Problems, 2014, 216. |
[13] | H. Jia, Concentrating ground state solutions for quasilinear Schrödinger equations with steep potential well, Appl. Anal., 2021, 100, 3065–3082. doi: 10.1080/00036811.2019.1707814 |
[14] | P. Li and Y. Yuan, Existence and multiplicity of solutions for the fractional Schrödinger equation with steep potential well perturbation, Int. J. Dyn. Syst. Differ. Equ., 2019, 9, 335–348. |
[15] | Y. Li and G. Li, Positive ground state solutions for Choquard equations with lower critical exponent and steep well potential, Applied Mathematics Letters, 2021, 118, 107151. doi: 10.1016/j.aml.2021.107151 |
[16] | J. Mawhin and M. Willem, Critical point theory and Hamiltonian system, Springer-Verlag, Berlin, 1989. |
[17] | R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 2015, 367, 67–102. |
[18] | K. Teng, Multiple solutions for a class of fractional Schrödinger equation in $\mathbb R^N$, Nonlinear Anal. Real World Appl., 2015, 21, 76–86. doi: 10.1016/j.nonrwa.2014.06.008 |
[19] | M. Willem, Minimax Theorems, in Progr. Nonlinear Differential Equations Appl., 1996, 24. |
[20] | L. Yin, X. Wu and C. Tang, Existence and concentration of ground state solutions for critical Schrödinger-Poisson equation with steep potential well, J. Applied Mathematicas and Computation, 2020, 374. |
[21] | H. Zhang, J. Xu and F. Zhang, Existence and multiplicity of solutions for superlinear fractional Schrödinger equations in $\mathbb{R}^{n}$, J. Math. Phys., 2015, 56, 091502. doi: 10.1063/1.4929660 |
[22] | J. Zhang, Z. Luo, Y. Ji and W. Shao, Ground state of Kirchhoff type fractional Schrödinger equations with critical growth, J. Math. Anal. Appl., 2018, 462, 57–83. doi: 10.1016/j.jmaa.2018.01.060 |