Citation: | Zhengxin Zhou. UNIFORM ISOCHRONOUS CENTER OF HIGHER-DEGREE POLYNOMIAL DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 116-132. doi: 10.11948/20210411 |
In this paper, we study the uniform isochronous center of a class of more general higher-degree of polynomial differential systems and give the necessary and sufficient conditions for the origin point to be a center. At the same time, we illustrate that under some restrictions, the composition conjecture about these differential systems is valid. As corollaries, the previous results can easily be derived from the current conclusion.
[1] | M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, New York, Dover, 1965. |
[2] | A. Algaba and M. Reyes, Computing center conditions for vector fields with constant angular speed, J. Comput. Appl. Math., 2003, 154(1), 143–159. doi: 10.1016/S0377-0427(02)00818-X |
[3] | A. Algaba, M. Reyes and A. Bravo, Geometry of the uniformly isochronous centers with polynomial commutator, Differ. Equ. Dyn. Syst., 2002, 10(3–4), 257–275. |
[4] | A. Algaba and M. Reyes, Centers with degenerate infinity and their commutators, (English summary) J. Math. Anal. Appl., 2003, 278(1), 109–124. doi: 10.1016/S0022-247X(02)00625-X |
[5] | M. A. M. Alwash, Periodic solutions of Abel differential equations, J. Math. Anal. Appl., 2007, 329, 1161–1169. doi: 10.1016/j.jmaa.2006.07.039 |
[6] | M. A. M. Alwash, Composition conditions for two-dimensional polynomial systems, Differ. Equ. Appl., 2013, 5(1), 1–12. |
[7] | M. A. M. Alwash and N. G. Lloyd, Non-autonomous equations related to polynomial two-dimensional systems, Proc. Roy. Soc. Edinburgh, 1987, 105, 129–152. doi: 10.1017/S0308210500021971 |
[8] | M. A. M. Alwash, Uniformly isochronous quartic systems, Qual. Theory Dyn. Syst., 2020, 19(2), 1–13. |
[9] | M. A. M. Alwash, On a condition for a center of cubic non-autonomous equations, Proc. Roy. Soc. Edinburgh Sect. A, 1989, 113, 289–291. doi: 10.1017/S030821050002415X |
[10] | M. A. M. Alwash, The composition conjecture for Abel equation, Expo. Math., 2009, 27, 241–250. doi: 10.1016/j.exmath.2009.02.002 |
[11] | J. C. Art$\acute{e}$s, J. Itikawa and J. Llibre, Uniform isochronous cubic and quartic centers, J. Comput. Appl. Math., 2017, 313, 448–453. doi: 10.1016/j.cam.2016.09.018 |
[12] | J. Chavarriga, I. A. Garc$\acute{i}$a and J. Gin$\acute{e}$, On integrability of differential equations defined by the sum of homogeneous vector fields with degenerate infinity, Int. J. Bifur. Chaos Appl. Sci. Engrg., 2001, 11(3), 711–722. doi: 10.1142/S0218127401002390 |
[13] | J. Chavarriga, I. A. Garc$\acute{i}$a and J. Gin$\acute{e}$, The nondegenerate center problem in certain families of planar differential systems, Int. J. Bifur. Chaos Appl. Sci. Engrg., 2009, 19(1), 435–443. doi: 10.1142/S0218127409022993 |
[14] | A. G. Choudhury and P. Guha, On commuting vector fields and Darboux functions for planar differential equations, Lobachevskii J. Math., 2013, 34, 212–226. doi: 10.1134/S1995080213030049 |
[15] | A. Cima, A. Gasull and F. Manosas, Centers for trigonometric Abel equations, Qual. Theory Dyn. Syst., 2012, 11, 19–37. doi: 10.1007/s12346-011-0054-9 |
[16] | R. Conti, Uniformly isochronous centers of polynomial systems in $R^2$, in: Lecture Notes in Pure and Appl. Math., 1994, 152, 21–31. |
[17] | J. Devlin, N. G. Lloyd and J. M. Pearson, Cubic systems and Abel equations, J. Differ. Equ., 1989, 147, 435–454. |
[18] | J. Gin$\acute{e}$, M. Grau and X. Santallusia, The center problem and composition condition for Abel differential equations, Expo. Math., 2016, 34(2), 210–222. doi: 10.1016/j.exmath.2015.12.002 |
[19] | J. Gin$\acute{e}$, On some open problems in planar differential systems and Hilbert's 16th problem, Chaos Solitons Fractals, 2007, 31(5), 1118–1134. doi: 10.1016/j.chaos.2005.10.057 |
[20] |
J. Gin$\acute{e}$ and X. Santallusia, On the Poincar$\acute{e}$-Lyapunov constants and the Poincar$\acute{e}$ series, Appl. Math. (Warsaw), 2001, 28(1), 17–30. doi: 10.4064/am28-1-2
CrossRef $\acute{e}$-Lyapunov constants and the Poincar |
[21] | J. Gin$\acute{e}$, M. Grau and X. Santallusia, Composition conditions in the trigonometric Abel equation, J. Appl. Anal. Comput., 2013, 3(2), 133–144. |
[22] | J. Itikawa and J. Llibre, Phase portraits of uniform isochronous quartic centers, J. Comput. Appl. Math., 2015, 287, 98–114. doi: 10.1016/j.cam.2015.02.046 |
[23] | N. G. Lloyd and J. M. Pearson, Computing centre conditions for certain cubic systems, J. Comput. Appl. Math., 1992, 40, 323–336. doi: 10.1016/0377-0427(92)90188-4 |
[24] | E. P. Volokitin, Center conditions for a simple class of quintic systems, Int. J. Math. Math. Sci., 2002, 29(11), 625–632. doi: 10.1155/S0161171202012802 |
[25] | E. P. Volokitin, Centering conditions for planar septic systems, Electron. J. Differ. Equ., 2003, 34, 1–7. |
[26] | Y. Yan and Z. Zhou, Research on the composition center of a class of rigid differential systems, J. Appl. Anal. Comput., 2020, 10(6), 2506–2520. |
[27] | Z. Zhou, The Poincare center-focus problem for a class of higher order polynomial differential systems, Math. Meth. Appl. Sci., 2019, 5475, 1–15. |
[28] | Z. Zhou, On the center-focus problem for a family of high-order polynomial differential systems, J. Dyn. Differ. Equ., 2020, 32(1), 393–418. doi: 10.1007/s10884-019-09735-4 |
[29] | Z. Zhou and V. G. Romanovski, The center problem and the composition condition for a family of quartic differential systems, Electron. J. Qual. Theory. Differ. Equ., 2018, 15, 1–17. |
[30] | Z. Zhou and Y. Yan, On the composition center for a class of rigid system, Bull. Braz. Math. Soc., New Series, 2020, 51, 139–155. doi: 10.1007/s00574-019-00147-y |
[31] | Z. Zhou and Y. Yan, On the composition conjecture for a class of rigid systems, Electron. J. Qual. Theory. Differ. Equ. 2019, 95, 1–22. |