2023 Volume 13 Issue 1
Article Contents

Zhengxin Zhou. UNIFORM ISOCHRONOUS CENTER OF HIGHER-DEGREE POLYNOMIAL DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 116-132. doi: 10.11948/20210411
Citation: Zhengxin Zhou. UNIFORM ISOCHRONOUS CENTER OF HIGHER-DEGREE POLYNOMIAL DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 116-132. doi: 10.11948/20210411

UNIFORM ISOCHRONOUS CENTER OF HIGHER-DEGREE POLYNOMIAL DIFFERENTIAL SYSTEMS

  • Corresponding author: Zhengxin Zhou, Email: zxzhou@yzu.edu.cn
  • Fund Project: The author was supported by National Natural Science Foundation of China (Nos. 62173292, 12171418)
  • In this paper, we study the uniform isochronous center of a class of more general higher-degree of polynomial differential systems and give the necessary and sufficient conditions for the origin point to be a center. At the same time, we illustrate that under some restrictions, the composition conjecture about these differential systems is valid. As corollaries, the previous results can easily be derived from the current conclusion.

    MSC: 34C07, 34C05, 34C25, 37G15
  • 加载中
  • [1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, New York, Dover, 1965.

    Google Scholar

    [2] A. Algaba and M. Reyes, Computing center conditions for vector fields with constant angular speed, J. Comput. Appl. Math., 2003, 154(1), 143–159. doi: 10.1016/S0377-0427(02)00818-X

    CrossRef Google Scholar

    [3] A. Algaba, M. Reyes and A. Bravo, Geometry of the uniformly isochronous centers with polynomial commutator, Differ. Equ. Dyn. Syst., 2002, 10(3–4), 257–275.

    Google Scholar

    [4] A. Algaba and M. Reyes, Centers with degenerate infinity and their commutators, (English summary) J. Math. Anal. Appl., 2003, 278(1), 109–124. doi: 10.1016/S0022-247X(02)00625-X

    CrossRef Google Scholar

    [5] M. A. M. Alwash, Periodic solutions of Abel differential equations, J. Math. Anal. Appl., 2007, 329, 1161–1169. doi: 10.1016/j.jmaa.2006.07.039

    CrossRef Google Scholar

    [6] M. A. M. Alwash, Composition conditions for two-dimensional polynomial systems, Differ. Equ. Appl., 2013, 5(1), 1–12.

    Google Scholar

    [7] M. A. M. Alwash and N. G. Lloyd, Non-autonomous equations related to polynomial two-dimensional systems, Proc. Roy. Soc. Edinburgh, 1987, 105, 129–152. doi: 10.1017/S0308210500021971

    CrossRef Google Scholar

    [8] M. A. M. Alwash, Uniformly isochronous quartic systems, Qual. Theory Dyn. Syst., 2020, 19(2), 1–13.

    Google Scholar

    [9] M. A. M. Alwash, On a condition for a center of cubic non-autonomous equations, Proc. Roy. Soc. Edinburgh Sect. A, 1989, 113, 289–291. doi: 10.1017/S030821050002415X

    CrossRef Google Scholar

    [10] M. A. M. Alwash, The composition conjecture for Abel equation, Expo. Math., 2009, 27, 241–250. doi: 10.1016/j.exmath.2009.02.002

    CrossRef Google Scholar

    [11] J. C. Art$\acute{e}$s, J. Itikawa and J. Llibre, Uniform isochronous cubic and quartic centers, J. Comput. Appl. Math., 2017, 313, 448–453. doi: 10.1016/j.cam.2016.09.018

    CrossRef Google Scholar

    [12] J. Chavarriga, I. A. Garc$\acute{i}$a and J. Gin$\acute{e}$, On integrability of differential equations defined by the sum of homogeneous vector fields with degenerate infinity, Int. J. Bifur. Chaos Appl. Sci. Engrg., 2001, 11(3), 711–722. doi: 10.1142/S0218127401002390

    CrossRef Google Scholar

    [13] J. Chavarriga, I. A. Garc$\acute{i}$a and J. Gin$\acute{e}$, The nondegenerate center problem in certain families of planar differential systems, Int. J. Bifur. Chaos Appl. Sci. Engrg., 2009, 19(1), 435–443. doi: 10.1142/S0218127409022993

    CrossRef Google Scholar

    [14] A. G. Choudhury and P. Guha, On commuting vector fields and Darboux functions for planar differential equations, Lobachevskii J. Math., 2013, 34, 212–226. doi: 10.1134/S1995080213030049

    CrossRef Google Scholar

    [15] A. Cima, A. Gasull and F. Manosas, Centers for trigonometric Abel equations, Qual. Theory Dyn. Syst., 2012, 11, 19–37. doi: 10.1007/s12346-011-0054-9

    CrossRef Google Scholar

    [16] R. Conti, Uniformly isochronous centers of polynomial systems in $R^2$, in: Lecture Notes in Pure and Appl. Math., 1994, 152, 21–31.

    Google Scholar

    [17] J. Devlin, N. G. Lloyd and J. M. Pearson, Cubic systems and Abel equations, J. Differ. Equ., 1989, 147, 435–454.

    Google Scholar

    [18] J. Gin$\acute{e}$, M. Grau and X. Santallusia, The center problem and composition condition for Abel differential equations, Expo. Math., 2016, 34(2), 210–222. doi: 10.1016/j.exmath.2015.12.002

    CrossRef Google Scholar

    [19] J. Gin$\acute{e}$, On some open problems in planar differential systems and Hilbert's 16th problem, Chaos Solitons Fractals, 2007, 31(5), 1118–1134. doi: 10.1016/j.chaos.2005.10.057

    CrossRef Google Scholar

    [20] J. Gin$\acute{e}$ and X. Santallusia, On the Poincar$\acute{e}$-Lyapunov constants and the Poincar$\acute{e}$ series, Appl. Math. (Warsaw), 2001, 28(1), 17–30. doi: 10.4064/am28-1-2

    CrossRef $\acute{e}$-Lyapunov constants and the Poincar$\acute{e}$ series" target="_blank">Google Scholar

    [21] J. Gin$\acute{e}$, M. Grau and X. Santallusia, Composition conditions in the trigonometric Abel equation, J. Appl. Anal. Comput., 2013, 3(2), 133–144.

    Google Scholar

    [22] J. Itikawa and J. Llibre, Phase portraits of uniform isochronous quartic centers, J. Comput. Appl. Math., 2015, 287, 98–114. doi: 10.1016/j.cam.2015.02.046

    CrossRef Google Scholar

    [23] N. G. Lloyd and J. M. Pearson, Computing centre conditions for certain cubic systems, J. Comput. Appl. Math., 1992, 40, 323–336. doi: 10.1016/0377-0427(92)90188-4

    CrossRef Google Scholar

    [24] E. P. Volokitin, Center conditions for a simple class of quintic systems, Int. J. Math. Math. Sci., 2002, 29(11), 625–632. doi: 10.1155/S0161171202012802

    CrossRef Google Scholar

    [25] E. P. Volokitin, Centering conditions for planar septic systems, Electron. J. Differ. Equ., 2003, 34, 1–7.

    Google Scholar

    [26] Y. Yan and Z. Zhou, Research on the composition center of a class of rigid differential systems, J. Appl. Anal. Comput., 2020, 10(6), 2506–2520.

    Google Scholar

    [27] Z. Zhou, The Poincare center-focus problem for a class of higher order polynomial differential systems, Math. Meth. Appl. Sci., 2019, 5475, 1–15.

    Google Scholar

    [28] Z. Zhou, On the center-focus problem for a family of high-order polynomial differential systems, J. Dyn. Differ. Equ., 2020, 32(1), 393–418. doi: 10.1007/s10884-019-09735-4

    CrossRef Google Scholar

    [29] Z. Zhou and V. G. Romanovski, The center problem and the composition condition for a family of quartic differential systems, Electron. J. Qual. Theory. Differ. Equ., 2018, 15, 1–17.

    Google Scholar

    [30] Z. Zhou and Y. Yan, On the composition center for a class of rigid system, Bull. Braz. Math. Soc., New Series, 2020, 51, 139–155. doi: 10.1007/s00574-019-00147-y

    CrossRef Google Scholar

    [31] Z. Zhou and Y. Yan, On the composition conjecture for a class of rigid systems, Electron. J. Qual. Theory. Differ. Equ. 2019, 95, 1–22.

    Google Scholar

Article Metrics

Article views(2267) PDF downloads(382) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint