Citation: | Zhiqin Lu, Xiaoling Ma, Minshao Zhang. SPECTRA OF GRAPH OPERATIONS BASED ON SPLITTING GRAPH[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 133-155. doi: 10.11948/20210446 |
The splitting graph $ SP(G) $ of a graph $ G $ is the graph obtained from $ G $ by taking a new vertex $ u' $ for each $ u \in V(G) $ and joining $ u' $ to all vertices of $ G $ adjacent to $ u $. For a connected regular graph $ G_1 $ and an arbitrary regular graph $ G_2 $, we determine the adjacency (respectively, Laplacian and signless Laplacian) spectra of two types of graph operations on $ G_1 $ and $ G_2 $ involving the $ SP $-graph of $ G_1 $. Moreover, applying these results we construct some non-regular simultaneous cospectral graphs for the adjacency, Laplacian and signless Laplacian matrices, and compute the Kirchhoff index and the number of spanning trees of the newly constructed graphs.
[1] | S. Barik, R. B. Bapat and S. Pati, On the Laplacian spectra of product graphs, Applicable Analysis and Discrete Mathematics, 2015, 9, 39–58. doi: 10.2298/AADM150218006B |
[2] | S. Barik, S. Pati and B. K. Sarma, The spectrum of the corona of two graphs, SIAM Journal on Discrete Mathematics, 2007, 21(1), 47–56. doi: 10.1137/050624029 |
[3] | A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Springer, New York, 2012. |
[4] | S. Butler, A note about cospectral graphs for the adjacency and normalized Laplacian matrices, Linear and Multilinear Algebra, 2010, 58(3), 387–390. doi: 10.1080/03081080902722741 |
[5] | D. M. Cardoso, D. Freitas, M. A. A. Martins and E. A. Robbiano, Spectra of graphs obtained by a generalization of the join graph operation, Discrete Mathematics, 2013, 313(5), 733–741. doi: 10.1016/j.disc.2012.10.016 |
[6] | S. Cui and G. Tian, The spectrum and the signless Laplacian spectrum of corona, Linear Algebra and Its Applications, 2012, 437(7), 1692–1703. doi: 10.1016/j.laa.2012.05.019 |
[7] | D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs-Theory and Applications, Third edition, Johann Ambrosius Barth, Heidelberg, 1995. |
[8] | D. M. Cvetković, P. Rowlinson and H. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2010. |
[9] | D. Cvetković and S. Simić, Graph spectra in computer science, Linear Algebra and Its Applications, 2011, 434, 1545–1562. doi: 10.1016/j.laa.2010.11.035 |
[10] | A. Das and P. Panigrahi, New classes of simultaneous cospectral graphs for adjacency, laplacian and normalized laplacian matrices, Kragujevac Journal of Mathematics, 2019, 43(2), 303–323. |
[11] | I. Gopalapillai, The spectrum of neighborhood corona of graphs, Kragujevac Journal of Mathematics, 2011, 35(3), 493–500. |
[12] | I. Gutman and B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, Journal of Chemical Information and Modeling, 1996, 36(5), 982–985. |
[13] | F. Harary, Graph Theory, Addison-Wesley, Massachusetts, 1969. |
[14] | R. A. Horn and F. Zhang, The Schur Complement and Its Application, Springer-Verlag, New York, 2005. |
[15] | Y. Hou and W. C. Shiu, The spectrum of the edge corona of two graphs, Electronic Journal of Linear Algebra, 2010, 20(1), 586–594. |
[16] | G. Indulal, Spectra of two new joins of graphs and infinite families of integral graphs, Kragujevac Journal of Mathematics, 2012, 36(1), 133–139. |
[17] | D. J. Klein and M. Randić, Resistance distance, Journal of Mathematical Chemistry, 1993, 12(1), 81–95. doi: 10.1007/BF01164627 |
[18] | X. Liu and Z. Zhang, Spectra of subdivision-vertex join and subdivision-edge join of two graphs, Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(1), 15–31. doi: 10.1007/s40840-017-0466-z |
[19] | X. Liu, J. Zhou and C. Bu, Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs, Discrete Applied Mathematics, 2015, 187, 130–139. doi: 10.1016/j.dam.2015.02.021 |
[20] | C. McLeman and E. McNicholas, Spectra of corona, Linear Algebra and Its Applications, 2011, 435(5), 998–1007. doi: 10.1016/j.laa.2011.02.007 |
[21] | B. Mohar, Laplace eigenvalues of graphs: A survey, Discrete Mathematics, 1992, 109, 171–183. doi: 10.1016/0012-365X(92)90288-Q |
[22] | E. Sampathkumar and H. B. Walikar, On the splitting graph of a graph, Journal of the Karnatak University, Science, 1981, 35/36, 13–16. |
[23] | H. Zhu, D. J. Klein and I. Lukovits, Extensions of the Wiener number, Journal of Chemical Information and Computer Sciences, 1996, 36(3), 420–428. doi: 10.1021/ci950116s |
The splitting V-vertex join of