2023 Volume 13 Issue 1
Article Contents

Ningning Ye, Long Zhang, Zhidong Teng. THE DYNAMICAL BEHAVIOR AND PERIODIC SOLUTION IN DELAYED NONAUTONOMOUS CHEMOSTAT MODELS[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 156-183. doi: 10.11948/20210452
Citation: Ningning Ye, Long Zhang, Zhidong Teng. THE DYNAMICAL BEHAVIOR AND PERIODIC SOLUTION IN DELAYED NONAUTONOMOUS CHEMOSTAT MODELS[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 156-183. doi: 10.11948/20210452

THE DYNAMICAL BEHAVIOR AND PERIODIC SOLUTION IN DELAYED NONAUTONOMOUS CHEMOSTAT MODELS

  • Corresponding author: Email: longzhang_xj@sohu.com (L. Zhang) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 11771373, 11861065), the Open Project of Key Laboratory of Applied Mathematics of Xinjiang Province (No. 2021D04014) and the Scientific Research Programmes of Colleges in Xinjiang (No. XJEDU20211002)
  • In this paper, the global dynamics and existence of positive periodic solutions in a general delayed nonautonomous chemostat model are investigated. The positivity and ultimate boundedness of solutions are firstly obtained. The sufficient conditions on the uniform persistence and strong persistence of solutions are established. Furthermore, the criterion on the global attractivity of trivial solution is also established. As the applications of main results, the periodic delayed chemostat model is discussed, and the necessary and sufficient criteria on the existence of positive periodic solutions, and uniform persistence and extinction of microorganism species are obtained. Lastly, the numerical examples are presented to illustrate the main conclusions.

    MSC: 92D25, 34K13, 34D20
  • 加载中
  • [1] P. Amster, G. Robledo and D. Seplveda, Dynamics of a chemostat with periodic nutrient supply and delay in the growth, Nonlinearity, 2020, 33(11), 5839–5860. doi: 10.1088/1361-6544/ab9bab

    CrossRef Google Scholar

    [2] P. Amster, G. Robledo and D. Sepš²lveda, Existence of $\omega$-periodic solutions for a delayed chemostat with periodic inputs, Nonlinear Anal., Real World Appl., 2020, 55, 103134. doi: 10.1016/j.nonrwa.2020.103134

    CrossRef $\omega$-periodic solutions for a delayed chemostat with periodic inputs" target="_blank">Google Scholar

    [3] E. Beretta and Y. Kuang, Global Stability in a well known delayed chemostat model, Commun. Appl. Anal., 2000, 4(2), 147–155.

    Google Scholar

    [4] T. Caraballo, X. Han and P. E. Kloeden, Chemostats with random inputs and wall growth, Math. Methods Appl. Sci., 2015, 38(16), 3538–3550. doi: 10.1002/mma.3437

    CrossRef Google Scholar

    [5] T. Caraballo, X. Han and P. E. Kloeden, Nonautonomous chemostats with variable delays, SIAM J. Math. Anal., 2015, 47(3), 2178–2199. doi: 10.1137/14099930X

    CrossRef Google Scholar

    [6] G. D'ans, P. Kokotović and D. Gottlieb, A nonlinear regulator problem for a model of biological waste treatment, IEEE Trans. Automat. Control, 1971, 16(4), 341–347. doi: 10.1109/TAC.1971.1099745

    CrossRef Google Scholar

    [7] S. F. Ellermeyer, S. S. Pilyugin and R. M. Redheffer, Persistence criteria for a chemostat with variable nutrient input, J. Differ. Equ., 2001, 171(1), 132–147. doi: 10.1006/jdeq.2000.4041

    CrossRef Google Scholar

    [8] R. Fekih-Salem, C. Lobry and T. Sari, A density-dependent model of competition for one resource in the chemostat, Math. Biosci., 2017, 286, 104–122. doi: 10.1016/j.mbs.2017.02.007

    CrossRef Google Scholar

    [9] X. Feng, J. Tian and X. Ma, Coexistence of an unstirred chemostat model with B-D functional response by fixed point index theory, J. Inequal. Appl., 2016, 2016(1), 294. doi: 10.1186/s13660-016-1241-7

    CrossRef Google Scholar

    [10] A. G. Fredrickson and G. Stephanopoulos, Microbial competition, Science, 1981, 213(4511), 972–979. doi: 10.1126/science.7268409

    CrossRef Google Scholar

    [11] H. I. Freedman, J. W. So and P. Waltman, Coexistence in a model of competition in the chemostat incorporating discrete delays, SIAM J. Appl. Math., 1989, 49(3), 859–870. doi: 10.1137/0149050

    CrossRef Google Scholar

    [12] R. Freter, H. Brickner and S. Temme, An understanding of colonization resistance of the mammalian large intestine requires mathematical analysis, Microecol. Therapy, 1986, 16, 147–155.

    Google Scholar

    [13] P. Gajardo, F. Mazenc and H. Ramirez, Competitive exclusion principle in a model of chemostat with delays, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2009, 16(2), 253–272.

    Google Scholar

    [14] M. Gao, D. Jiang, T. Hayat, A. Alsaedi and B. Ahmad, Dynamics of a stochastic chemostat competition model with plasmid-bearing and plasmid-free organisms, J. Appl. Anal. Comput., 2020, 10(4), 1464–1481.

    Google Scholar

    [15] J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganism Cultures, ISTE Ltd, London, 2017.

    Google Scholar

    [16] S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM J. Appl. Math., 1992, 52(2), 528–540. doi: 10.1137/0152029

    CrossRef Google Scholar

    [17] J. W. M. La Rivière, Microbial Ecology of Liquid Waste Treatment, Springer, Boston, 1977.

    Google Scholar

    [18] M. Lin, H. Huo and Y. Li, A competitive model in a chemostat with nutrient recycling and antibiotic treatment, Nonlinear Anal., Real World Appl., 2012, 13(6), 2540–2555. doi: 10.1016/j.nonrwa.2012.02.016

    CrossRef Google Scholar

    [19] S. Liu, X. Wang, L. Wang and H. Song, Competitive exclusion in delayed chemostat models with differential removal rates, SIAM J. Appl. Math., 2014, 74(3), 634–648. doi: 10.1137/130921386

    CrossRef Google Scholar

    [20] S. Liu, Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design, Elsevier, Kidlington, 2017.

    Google Scholar

    [21] C. Lobry, F. Mazenc and A. Rapaport, Persistence in ecological models of competition for a single resource, C. R. Acad. Sci. Paris, Ser. I, 2005, 340(3), 199–204. doi: 10.1016/j.crma.2004.12.021

    CrossRef Google Scholar

    [22] N. MacDonald, Time lags in biological models, Springer, New York, 1978.

    Google Scholar

    [23] F. Mazenc, S. I. Niculescu and G. Robledo, Stability analysis of mathematical model of competition in a chain of chemostats in series with delay, Appl. Math. Modelling, 2019, 76, 311–329. doi: 10.1016/j.apm.2019.06.006

    CrossRef Google Scholar

    [24] F. Mazenc, G. Robledo and M. Malisoff, Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties, Discr. Contin. Dyn. Syst. Ser. B, 2018, 23(4), 1851–1872.

    Google Scholar

    [25] X. Meng, L. Wang and T. Zhang, Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment, J. Appl. Anal. Comput., 2016, 6(3), 865–875.

    Google Scholar

    [26] J. Monod, La technique de culture continue, théorie et applications, Academic Press, New York, 1950.

    Google Scholar

    [27] A. Novick and L. Szilard, Experiments with the chemostat on spontaneous mutation of bacteria, Proc. Nat. Acad. Sci., 1950, 36(12), 708–719. doi: 10.1073/pnas.36.12.708

    CrossRef Google Scholar

    [28] M. Rehim and Z. Teng, Permanence, average persistence and exctinction in nonautonomous single-species growth chemostat models, Adv. Complex Syst., 2006, 9(1), 41–58.

    Google Scholar

    [29] M. Rehim and Z. Teng, Mathematical analysis on nonautonomous droop model for phytoplankton growth in a chemostat: boundedness, permanence and extinction, J. Math. Chem., 2009, 46(2), 459–483. doi: 10.1007/s10910-008-9472-6

    CrossRef Google Scholar

    [30] S. Ruan and X. He, Global stability in chemostat-type competitionmodels with nutrient recycling, SIAM J. Appl. Math., 1998, 58(1), 170–192. doi: 10.1137/S0036139996299248

    CrossRef Google Scholar

    [31] T. Sari and F. Mazenc, Global dynamics of the chemostat with different rates and variable yields, Math. Biosci. Eng., 2011, 8(3), 827–840. doi: 10.3934/mbe.2011.8.827

    CrossRef Google Scholar

    [32] S. Sun, C. Guo and X. Liu, Hopf bifurcation of a delayed chemostat model with general monotone response functions, Comp. Appl. Math., 2018, 37(3), 2714–2737.

    Google Scholar

    [33] H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, Cambridge, 1995.

    Google Scholar

    [34] Z. Teng, Z. Li and H. Jiang, Permanence criteria in non-autonomous predator-prey Kolmogorov systems and its applications, Dyn. Syst., 2004, 19(2), 171–194.

    Google Scholar

    [35] Z. Teng and L. Chen, The positive periodic solutions of periodic Kolmogorov type systems with delays (in Chinese), Acta Math. Appl. Sin., 1999, 22(3), 446–456.

    Google Scholar

    [36] Z. Teng, L. Nie and X. Fang, The periodic solutions for general periodic impulsive population systems of functional differential equations and its applications, Comp. Math. Appl., 2011, 61(9), 2690–2703.

    Google Scholar

    [37] T. F. Thingstad and T. I. Langeland, Dynamics of chemostat culture: the effect of a delay in cell response, J. Theor. Biol., 1974, 48(1), 149–159.

    Google Scholar

    [38] P. Waltman, Competition Models in Population Biology, SIAM, Philadelphia, 1983.

    Google Scholar

    [39] L. Wang and G. S. K. Wolkowicz, A delayed chemostat model with general nonmonotone response functions and differential removal rates, J. Math. Anal. Appl., 2006, 321(1), 452–468.

    Google Scholar

    [40] K. Wang, Z. Teng and X. Zhang, Dynamic behaviors in a droop model for phytoplankton growth in a chemostat with nutrient periodically pulsed input, Discr. Dyn. Nat. Soc., 2012, 2012 (Part 2), 843735.

    Google Scholar

    [41] J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat, SIAM J. Math. Anal., 2007, 38(6), 1860–1885.

    Google Scholar

    [42] X. Zhang and R. Yuan, Stochastic properties of solution for a chemostat model with a distributed delay and random disturbance, Int. J. Biomath., 2020, 13(7), 2050066.

    Google Scholar

    [43] X. Zhao, Dynamical Systems in Population Biology, Springer, London, 2003.

    Google Scholar

Figures(4)

Article Metrics

Article views(2340) PDF downloads(549) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint