2022 Volume 12 Issue 6
Article Contents

Yu Yang, Jueyu Wang, Shengliang Zhang, Tonghua Zhang. DYNAMICAL ANALYSIS OF A FRACTIONAL ORDER HCV INFECTION MODEL WITH ACUTE AND CHRONIC AND GENERAL INCIDENCE RATE[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2283-2298. doi: 10.11948/20210430
Citation: Yu Yang, Jueyu Wang, Shengliang Zhang, Tonghua Zhang. DYNAMICAL ANALYSIS OF A FRACTIONAL ORDER HCV INFECTION MODEL WITH ACUTE AND CHRONIC AND GENERAL INCIDENCE RATE[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2283-2298. doi: 10.11948/20210430

DYNAMICAL ANALYSIS OF A FRACTIONAL ORDER HCV INFECTION MODEL WITH ACUTE AND CHRONIC AND GENERAL INCIDENCE RATE

  • This paper is concerned with a fractional order HCV infection model with acute and chronic and general incidence rate. We first give the positivity and boundedness of the solution for this model. Then, we establish the dynamical behavior of this model in terms of $ \mathcal{R}_{0}^{\alpha} $. Numerical simulations are given to verify the obtained theoretical results.

    MSC: 34A08, 92D25
  • 加载中
  • [1] T. A. R. Aggarwal and Y. A. Raj, A fractional order HIV-TB co-infection model in the presence of exogenous reinfection and recurrent TB, Nonlinear Dyn., 2021, 104, 4701-4725. doi: 10.1007/s11071-021-06518-9

    CrossRef Google Scholar

    [2] E. Ahmed, A. M. A. El-Sayed and H. A. A. El-Saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Phys. Lett. A, 2006, 358, 1-4. doi: 10.1016/j.physleta.2006.04.087

    CrossRef Google Scholar

    [3] L. Cai and X. Li, A note on global stability of an SEI epidemic model with acute and chronic stages, Appl. Math. Comput., 2008, 196, 23-930.

    Google Scholar

    [4] Y. Chen, F. Liu, Q. Yu and T. Li, Review of fractional epidemic models, Appl. Math. Model., 2021, 97, 281-307. doi: 10.1016/j.apm.2021.03.044

    CrossRef Google Scholar

    [5] N. D. Cong, T. S. Doan, S. Siegmund and H. T. Tuan, Linearized asymptotic stability for fractional differential equations, Electron. J. Qual. Theo. Diff. Equ., 2016, 39, 1-13.

    Google Scholar

    [6] N. D. Cong, T. S. Doan, S. Siegmund and H. T. Tuan, An instability theorem for nonlinear fractional differential systems, Discrete Contin. Dyn. Syst. Ser. B, 2017, 22, 3079-3090.

    Google Scholar

    [7] J. Cui, S. Zhao, S. Guo, Y. Bai, X. Wang and T. Chen, Global dynamics of an epidemiological model with acute and chronic HCV infections, Appl. Math. Lett., 2020, 103, 106203. doi: 10.1016/j.aml.2019.106203

    CrossRef Google Scholar

    [8] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.

    Google Scholar

    [9] K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dyn., 2013, 71, 613-619. doi: 10.1007/s11071-012-0475-2

    CrossRef Google Scholar

    [10] K. M. Furati, I. O. Sarumi and A. Q. M. Khaliq, Fractional model for the spread of COVID-19 subject to government intervention and public perception, Appl. Math. Model., 2021, 95, 89-105. doi: 10.1016/j.apm.2021.02.006

    CrossRef Google Scholar

    [11] J. R. Graef, L. Kong, A. Ledoan and M. Wang, Stability analysis of a fractional online social network model, Math. Comput. Simulat., 2020, 178, 625-645. doi: 10.1016/j.matcom.2020.07.012

    CrossRef Google Scholar

    [12] G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 2010, 72, 1192-1207. doi: 10.1007/s11538-009-9487-6

    CrossRef Google Scholar

    [13] H. Kheiri and M. Jafari, Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment, J. Comput. Appl. Math., 2019, 346, 323-339. doi: 10.1016/j.cam.2018.06.055

    CrossRef Google Scholar

    [14] Q. Kong, A Short Course in Ordinary Differential Equations, Springer, New York, 2015.

    Google Scholar

    [15] A. Lahrouz, R. Hajjami, M. E. Jarroudi and A. Settati, Mittag-Leffler stability and bifurcation of a nonlinear fractional model with replase, J. Comput. Appl. Math., 2021, 386, 113247. doi: 10.1016/j.cam.2020.113247

    CrossRef Google Scholar

    [16] Y. Li, Y. Chen and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 2010, 59, 1810-1823. doi: 10.1016/j.camwa.2009.08.019

    CrossRef Google Scholar

    [17] Z. Lu, Y. Yu, Y. Chen, G. Ren, C. Xu, S. Wang and Z. Yin, A fractional-order SEIHDR model for COVID-19 with inter-city networked coupling effects, Nonlinear Dyn., 2020, 101, 1717-1730. doi: 10.1007/s11071-020-05848-4

    CrossRef Google Scholar

    [18] M. Martcheva and C. Castillo-Chavez, Diseases with chronic stage in a population with varying size, Math. Biosci., 2003, 182, 1-25. doi: 10.1016/S0025-5564(02)00184-0

    CrossRef Google Scholar

    [19] C. C. McCluskey and Y. Yang, Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal. RWA., 2015, 25, 64-78. doi: 10.1016/j.nonrwa.2015.03.002

    CrossRef Google Scholar

    [20] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

    Google Scholar

    [21] B. Reade, R. G. Bowers, M. Begon and R. Gaskell, A model of disease and vaccination for infections with acute and chronic phases, J. Theor. Biol., 1998, 190, 55-367.

    Google Scholar

    [22] T. Sardar, S. Rana and J. Chattopadhyay, A mathematical model of dengue transmission with memory, Commun. Nonlinear Sci. Numer. Simulat., 2015, 22, 511-525. doi: 10.1016/j.cnsns.2014.08.009

    CrossRef Google Scholar

    [23] J. L. Schiff, The Laplace Transform: Theory and Applications, Springer, New York, 1999.

    Google Scholar

    [24] R. Shi, T. Lu and C. Wang, Dynamic analysis of a fractional-order model for HIV with drug-resistance and CTL immune response, Math. Comput. Simulat., 2021, 188, 509-536. doi: 10.1016/j.matcom.2021.04.022

    CrossRef Google Scholar

    [25] B. Sounvoravong and S. Guo, Dynamics of a diffusive SIR epidemic model with time delay, J. Nonlinear Model. Anal., 2019, 1, 319-334.

    Google Scholar

    [26] R. Su and W. Yang, Global stability of a diffusive HCV infections epidemic model with nonlinear incidence, J. Appl. Math. Comput., 2021. https://doi.org/10.1007/s12190-021-01637-3. doi: 10.1007/s12190-021-01637-3

    CrossRef Google Scholar

    [27] Y. Wang, Z. Zhao and M. Wang, The transmissibility of hepatitis C virus: a modelling study in Xiamen City, China, Epidemiol. Infect., 2020, 148, e291. doi: 10.1017/S0950268820002885

    CrossRef Google Scholar

    [28] World Health Organization, Hepatitis C, 2021. https://www.who.int/news-room/fact-sheets/detail/hepatitis-c.

    Google Scholar

    [29] Y. Yang and L. Xu, Stability of a fractional order SEIR model with general incidence, Appl. Math. Lett., 2020, 105, 106303. doi: 10.1016/j.aml.2020.106303

    CrossRef Google Scholar

    [30] Y. Yang, J. Zhou and C. H. Hsu, Threshold dynamics of a diffusive SIRI model with nonlinear incidence rate, J. Math. Anal. Appl., 2019, 478, 874-896.

    Google Scholar

    [31] Y. Yang, L. Zou, J. Zhou and C. H. Hsu, Dynamics of a waterborne pathogen model with spatial heterogeneity and general incidence rate, Nonlinear Anal. RWA., 2020, 53, 103065. doi: 10.1016/j.nonrwa.2019.103065

    CrossRef Google Scholar

    [32] J. Yuan and Z. Yang, Global dynamics of an SEI model with acute and chronic stages, J. Comput. Appl. Math., 2008, 213, 465-476. doi: 10.1016/j.cam.2007.01.042

    CrossRef Google Scholar

    [33] R. Zhang and Y. Liu, A new Barbalat's lemma and Lyapunov stability theorem for fractional order systems, 29th Chinese control and decision conference (CCDC), IEEE, 2017, 3676-3681.

    Google Scholar

    [34] S. Zhang and Y. Zhou, Dynamics and application of an epidemiological model for hepatitis C, Math. Comput. Modell., 2012, 56, 36-42. doi: 10.1016/j.mcm.2011.11.081

    CrossRef Google Scholar

    [35] Y. Zhou, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations (Second Edition), World Scientific, Singapore, 2016.

    Google Scholar

Figures(5)  /  Tables(2)

Article Metrics

Article views(2358) PDF downloads(534) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint