2022 Volume 12 Issue 6
Article Contents

Tim Hopkins, Emrah Kılıç. ANALYTICALLY EXPLICIT INVERSE OF A KIND OF PERIODIC TRIDIAGONAL MATRIX USING A BACKWARD CONTINUED FRACTION APPROACH[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2299-2313. doi: 10.11948/20210441
Citation: Tim Hopkins, Emrah Kılıç. ANALYTICALLY EXPLICIT INVERSE OF A KIND OF PERIODIC TRIDIAGONAL MATRIX USING A BACKWARD CONTINUED FRACTION APPROACH[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2299-2313. doi: 10.11948/20210441

ANALYTICALLY EXPLICIT INVERSE OF A KIND OF PERIODIC TRIDIAGONAL MATRIX USING A BACKWARD CONTINUED FRACTION APPROACH

  • We present a fast algorithm for generating the inverse and the determinant of an extended, periodic, tridiagonal matrix. We use backward continued fractions to generate the elements of the inverse in closed form. By trading memory use against the cost of repeating the computation of certain quantities we are able to produce an effective procedure for a symbolic algebra implementation. We compare the performance of our Maple implementation with that of the standard Maple library procedures for matrix inversion and computation of the determinant on a set of illustrative example matrices.

    MSC: 15A09
  • 加载中
  • [1] J. Ao and J. Sun, Matrix representations of Sturm-Liouville problems with coupled eigenparameter-dependent boundary conditions, Applied Mathematics and Computation, 2014, 244, 142–148.

    Google Scholar

    [2] A. Ayzenberg, Space of isospectral periodic tridiagonal matrices, Algebr. Geom. Topol., 2020, 20, 2957–2994. doi: 10.2140/agt.2020.20.2957

    CrossRef Google Scholar

    [3] M. G. Beker, G. Cella, R. DeSalvo, et al., Improving the sensitivity of future GW observatories in the 1–10 Hz band: Newtonian and seismic noise, General Relativity and Gravitation, 2011, 43(2), 623–656. doi: 10.1007/s10714-010-1011-7

    CrossRef Google Scholar

    [4] A. Bunse-Gerstner, R. Byers and V. Mehrmann, A chart of numerical methods for structured eigenvalue problems, SIAM J. Matrix Anal. Appl., 1992, 13(2), 419–453. doi: 10.1137/0613028

    CrossRef Google Scholar

    [5] R. A. Bustos-Marún, E. A. Coronado and H. M. Pastawski, Buffering plasmons in nanoparticle wave guides at the virtual-localized transition, Phys. Rev. B, 2010, 82(3), 035434.

    Google Scholar

    [6] B. K. Choudhury, Diffusion of heat in multidimensional composite spherical body, IMA J. Appl. Math., 2013, 78(3), 474–493.

    Google Scholar

    [7] C. M. da Fonseca, On the eigenvalues of some tridiagonal matrices, J. Comput. Appl. Math., 2007, 200(1), 283–286. doi: 10.1016/j.cam.2005.08.047

    CrossRef Google Scholar

    [8] C. M. da Fonseca and V. Kowalenko, Eigenpairs of a family of tridiagonal matrices: three decades later, Acta Mathematica Hungarica, 2019, 160, 376–389.

    Google Scholar

    [9] M. Dow, Explicit inverses of Toeplitz and associated matrices, ANZIAM Journal, 2008, 44, E185–E215. doi: 10.21914/anziamj.v44i0.493

    CrossRef Google Scholar

    [10] M. E. A. El-Mikkawy and F. Atlan, A new recursive algorithm for inverting general k-tridiagonal matrices, Appl. Math. Lett., 2015, 44, 34–39.

    Google Scholar

    [11] M. A. El-Shehawey, G. A. El-Shreef and A. S. Al-Henawy, Analytical inversion of general periodic tridiagonal matrices, J. Math. Anal. Appl., 2008, 345, 123–134. doi: 10.1016/j.jmaa.2008.04.002

    CrossRef Google Scholar

    [12] K. Filipiak, A. Markiewicz and A. Sawikowski, Determinants of multidiagonal matrices, Electron. J. Linear Al., 2012, 25, 102–188.

    Google Scholar

    [13] C. F. Fischer and R. A. Usmani, Properties of some tridiagonal matrices and their application to boundary value problems, SIAM J. Numer. Anal., 1969, 6(1), 127–142.

    Google Scholar

    [14] Y. Fu, X. Jiang, Z. Jiang and S. Jhang, Inverses and eigenpairs of tridiagonal Toeplitz matrix with opposite-bordered rows, J. Appl. Anal. Comput., 2020, 10(4), 1599–1613.

    Google Scholar

    [15] T. Hopkins and E. Kılıç, An analytical approach: Explicit inverses of periodic tridiagonal matrices, Journal of Computational and Applied Mathematics, 2018, 335, 207–226.

    Google Scholar

    [16] W. B. Jones and W. J. Thron, Continued fraction, analytic theory and applications, Addison Wesley, Reading, MA, 1980.

    Google Scholar

    [17] E. Kılıç, Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions, Appl. Math. Comput., 2008, 197(1), 345–357.

    Google Scholar

    [18] D. H. Lehmer, D. M. Smiley, M. F. Smiley and J. Williamson, Solution to problem E710, The American Mathematical Monthly, 1946, 53(9), 534–535.

    Google Scholar

    [19] Maplesoft, a division of Waterloo Maple Inc., Maple 2019, Waterloo, Ontario, Canada.

    Google Scholar

    [20] R. M. M. Mattheij and M. D. Smooke, Estimates for the inverse of tridiagonal matrices arising in boundary-value problems, Linear Algebra Appl., 1986, 73, 33–57.

    Google Scholar

    [21] G. Meurant, A review on the inverse of symmetric tridiagonal and block tridiagonal matrices, SIAM J. Matrix Anal. Appl., 1992, 13(3), 707–728.

    Google Scholar

    [22] L. G. Molinari, Determinants of block tridiagonal matrices, Linear Algebra Appl., 2008, 429, 2221–2226.

    Google Scholar

    [23] Wolfram Research, Inc., Mathematica, Version 12.0. Champaign, IL, 2019.

    Google Scholar

Figures(2)

Article Metrics

Article views(2067) PDF downloads(480) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint