2022 Volume 12 Issue 6
Article Contents

Ashish, Jinde Cao. DYNAMICAL INTERPRETATIONS OF A GENERALIZED CUBIC SYSTEM[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2314-2329. doi: 10.11948/20210455
Citation: Ashish, Jinde Cao. DYNAMICAL INTERPRETATIONS OF A GENERALIZED CUBIC SYSTEM[J]. Journal of Applied Analysis & Computation, 2022, 12(6): 2314-2329. doi: 10.11948/20210455

DYNAMICAL INTERPRETATIONS OF A GENERALIZED CUBIC SYSTEM

  • Chaotic map is a typical route in mathematics to describe the dynamical interpretations in various applications of science and engineering. However, the dynamics in the traditional logistic chaotic map $ r\vartheta(1-\vartheta) $ depends on the single control parameter $ r $. In this article, a generalized cubic chaotic map with three changeable parameters $ a $, $ b $ and $ r $ is introduced and its dynamical properties are studied. The added new control parameter increases the flexibility in the system due to which it can fit in various applications. A few cases are discussed showing the effectiveness of the changeable parameters in various properties such as stationary and periodic states, stability in stationary states, Lyapunov exponent property, bifurcation interpretation, and the minimum entropy control. Further, the developments are illustrated mathematically as well as experimentally followed by period-doubling bifurcation and Lyapunov exponent diagrams. Moreover, it is noticed that as compared to traditional chaotic systems, a bifurcation self-similarity is seen along the x-axis in all the cases of the cubic map. Moreover, a brief summary on Shannon minimum entropy is also given to control the unstable stationary and periodic states in chaotic regime.

    MSC: 34N05, 37N35, 37D45
  • 加载中
  • [1] K. T. Alligood, T. D. Sauer and J. A. Yorke, Chaos : An Introduction to Dynamical Systems, Springer Verlag, New York Inc., 1996.

    Google Scholar

    [2] O. Alpar, Analysis of a new simple one dimensional chaotic map, Nonlinear Dyn., 2014, 78, 771–778. doi: 10.1007/s11071-014-1475-1

    CrossRef Google Scholar

    [3] M. Andrecut, Logistic map as a random number generator, Int. J. Mod. Phys. B., 1998, 12(921), 101–102.

    Google Scholar

    [4] D. Aniszewska, New discrete chaotic multiplicative maps based on the logistic map, Int. J. Bifurc. Chaos, 2018, 28(9), 7.

    Google Scholar

    [5] Ashish, J. Cao and R. Chugh, Chaotic behavior of logistic map in superior orbit and an improved chaos-based traffic control model, Nonlinear Dyn., 2018, 94(2), 959–975. doi: 10.1007/s11071-018-4403-y

    CrossRef Google Scholar

    [6] Ashish and J. Cao, A novel fixed point feedback approach studying the dynamcial behaviour of standard logistic map, Int. J. Bifurc. Chaos, 2019, 29(1), 16.

    Google Scholar

    [7] Ashish, J. Cao and R. Chugh, Controlling chaos using superior feedback technique with applications in discrete traffic models, Int. J. Fuzzy Syst., 2019, 21(5), 1467–1479. doi: 10.1007/s40815-019-00636-8

    CrossRef Google Scholar

    [8] Ashish, J. Cao and R. Chugh, Discrete chaotification in modulated logistic system, Int. J. Bifurc. Chaos, 2021, 31(5), 14.

    Google Scholar

    [9] Ashish, J. Cao, F. Alsaadi and A. K. Malik, Discrete Superior Hyperbolicity in Chaotic Maps, Chaos: Theory and Applications, 2021, 3(1), 34–42. doi: 10.51537/chaos.936679

    CrossRef Google Scholar

    [10] Ashish, M. Rani and R. Chugh, Julia sets and Mandelbrot sets in Noor orbit, Appl. Math. Comput., 2014, 228, 615–631.

    Google Scholar

    [11] D. Baleanu, G. Wu, Y. Bai and F. Chen, Stability analysis of Caputo–like discrete fractional systems, Commun. Nonlinear Sci. Numer. Simulat., 2017, 48, 520–530. doi: 10.1016/j.cnsns.2017.01.002

    CrossRef Google Scholar

    [12] M. S. Baptista, Cryptography with chaos, Phy. Lett. A, 1998, 240, 50–54. doi: 10.1016/S0375-9601(98)00086-3

    CrossRef Google Scholar

    [13] J. Cao, Ashish and F. Alsaadi, Chaotic evolution of difference equations in Mann orbit, J. Appl. Anal. Comput., 2021, 11(6), 3063–3082.

    Google Scholar

    [14] R. Chugh, M. Rani and Ashish, Logistic map in Noor orbit, Chaos and Complexity Letters, 2012, 6(3), 167–175.

    Google Scholar

    [15] A. R. Chowdhary and M. Debnath, Periodicity and Chaos in Modulated Logistic map, Int. J. Theor. Phy., 1990, 29(7), 779–788. doi: 10.1007/BF00673913

    CrossRef Google Scholar

    [16] R. L. Devaney, A First Course in Chaotic Dynamical Systems: Theory and Experiment, Addison-Wesley, 1992.

    Google Scholar

    [17] J. E. Disbro and M. Frame, Traffic flow theory and chaotic behavior, Transp. Res. Rec., 1990, 1225, 109–115.

    Google Scholar

    [18] L. P. L. de Oliveira and M. Sobottka, Cryptography with chaotic mixing, Chaos Solitons Fractals, 2008, 3(35), 466–471.

    Google Scholar

    [19] M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., 1978, 19(1), 25–52. doi: 10.1007/BF01020332

    CrossRef Google Scholar

    [20] A. Garfinkel, M. L. Spano, W. L. Ditto and J. N. Weiss, Controlling cardiac chaos, Science, 1992, 257, 1230–1235. doi: 10.1126/science.1519060

    CrossRef Google Scholar

    [21] D. Grether, A. Neumann and K. Nagel, Simulation of urban traffic control: A queue model approach, Procedia Comput. Sci., 2012, 10, 808–814.

    Google Scholar

    [22] S. C. Lo and H. J. Cho, Chaos and control of discrete dynamic traffic model, J. Franklin Inst., 2005, 342, 839–851.

    Google Scholar

    [23] K. Malek, and F. Gobal, Application of chaotic logistic map for the interpretation of anion-insertion in poly-ortho-aminophenol films, Synth. Met., 2000, 11, 167–171.

    Google Scholar

    [24] R. May, Simple mathematical models with very complicated dynamics, Nature, 1976, 261, 459–475.

    Google Scholar

    [25] H. Poincare, Les Methods Nouvells de la Mecanique Leleste, Gauthier Villars, Paris, 1899.

    Google Scholar

    [26] H. Sadeghian, K. Merat, H. Salarieh and A. Alasty, On the fuzzy minimum entropy control to stabilize the unstable fixed points of chaotic maps, Appl. Math. Model., 2011, 3(35), 1016–1023.

    Google Scholar

    [27] H. Salarieh and A. Alasty, Stabilizing unstable fixed points of chaotic maps via minimum entropy control, Chaos Solitons Fractals, 2008, 37, 763–769.

    Google Scholar

    [28] N. Singh and A. Sinha, Chaos-based secure communication system using logistic map, Opt. Lasers Eng., 2010, 48, 398–404.

    Google Scholar

    [29] Y. Wang, S. Liu and H. Li, On fractional difference logistic maps: Dynamic analysis and synchronous control, Nonlinear Dyn., 2020, 102, 579–588.

    Google Scholar

    [30] J. N. Weiss, A. Garfinkel, M. L. Spano and W. L. Ditto, Chaos and chaos control in biology, J. Clin. Invest., 1994, 93, 1355–1360.

    Google Scholar

    [31] G. Wu and D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dyn., 2014, 75, 283–286.

    Google Scholar

    [32] G. Wu and D. Baleanu, Discrete chaos in fractional delayed logistic map, Nonlinear Dyn., 2015, 80, 1697–1703.

    Google Scholar

Figures(5)

Article Metrics

Article views(2411) PDF downloads(282) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint